Xiaotian Jiang


2019

pdf bib
Adaptive Convolution for Multi-Relational Learning
Xiaotian Jiang | Quan Wang | Bin Wang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We consider the problem of learning distributed representations for entities and relations of multi-relational data so as to predict missing links therein. Convolutional neural networks have recently shown their superiority for this problem, bringing increased model expressiveness while remaining parameter efficient. Despite the success, previous convolution designs fail to model full interactions between input entities and relations, which potentially limits the performance of link prediction. In this work we introduce ConvR, an adaptive convolutional network designed to maximize entity-relation interactions in a convolutional fashion. ConvR adaptively constructs convolution filters from relation representations, and applies these filters across entity representations to generate convolutional features. As such, ConvR enables rich interactions between entity and relation representations at diverse regions, and all the convolutional features generated will be able to capture such interactions. We evaluate ConvR on multiple benchmark datasets. Experimental results show that: (1) ConvR performs substantially better than competitive baselines in almost all the metrics and on all the datasets; (2) Compared with state-of-the-art convolutional models, ConvR is not only more effective but also more efficient. It offers a 7% increase in MRR and a 6% increase in Hits@10, while saving 12% in parameter storage.

2016

pdf bib
Relation Extraction with Multi-instance Multi-label Convolutional Neural Networks
Xiaotian Jiang | Quan Wang | Peng Li | Bin Wang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Distant supervision is an efficient approach that automatically generates labeled data for relation extraction (RE). Traditional distantly supervised RE systems rely heavily on handcrafted features, and hence suffer from error propagation. Recently, a neural network architecture has been proposed to automatically extract features for relation classification. However, this approach follows the traditional expressed-at-least-once assumption, and fails to make full use of information across different sentences. Moreover, it ignores the fact that there can be multiple relations holding between the same entity pair. In this paper, we propose a multi-instance multi-label convolutional neural network for distantly supervised RE. It first relaxes the expressed-at-least-once assumption, and employs cross-sentence max-pooling so as to enable information sharing across different sentences. Then it handles overlapping relations by multi-label learning with a neural network classifier. Experimental results show that our approach performs significantly and consistently better than state-of-the-art methods.