Xiaoxia Cheng


pdf bib
A Set Prediction Network For Extractive Summarization
Xiaoxia Cheng | Yongliang Shen | Weiming Lu
Findings of the Association for Computational Linguistics: ACL 2023

Extractive summarization focuses on extracting salient sentences from the source document and incorporating them in the summary without changing their wording or structure. The naive approach for extractive summarization is sentence classification, which makes independent binary decisions for each sentence, resulting in the model cannot detect the dependencies between sentences in the summary. Recent approaches introduce an autoregressive decoder to detect redundancy relationship between sentences by step-by-step sentence selection, but bring train-inference gap. To address these issues, we formulate extractive summarization as a salient sentence set recognition task. To solve the sentence set recognition task, we propose a set prediction network (SetSum), which sets up a fixed set of learnable queries to extract the entire sentence set of the summary, while capturing the dependencies between them.Different from previous methods with an auto-regressive decoder, we employ a non-autoregressive decoder to predict the sentences within the summary in parallel during both the training and inference process, which eliminates the train-inference gap. Experimental results on both single-document and multi-document extracted summary datasets show that our approach outperforms previous state-of-the-art models.


pdf bib
Multi-View Reasoning: Consistent Contrastive Learning for Math Word Problem
Wenqi Zhang | Yongliang Shen | Yanna Ma | Xiaoxia Cheng | Zeqi Tan | Qingpeng Nong | Weiming Lu
Findings of the Association for Computational Linguistics: EMNLP 2022

Math word problem solver requires both precise relation reasoning about quantities in the text and reliable generation for the diverse equation. Current sequence-to-tree or relation extraction methods regard this only from a fixed view, struggling to simultaneously handle complex semantics and diverse equations. However, human solving naturally involves two consistent reasoning views: top-down and bottom-up, just as math equations also can be expressed in multiple equivalent forms: pre-order and post-order. We propose a multi-view consistent contrastive learning for a more complete semantics-to-equation mapping. The entire process is decoupled into two independent but consistent views: top-down decomposition and bottom-up construction, and the two reasoning views are aligned in multi-granularity for consistency, enhancing global generation and precise reasoning. Experiments on multiple datasets across two languages show our approach significantly outperforms the existing baselines, especially on complex problems. We also show after consistent alignment, multi-view can absorb the merits of both views and generate more diverse results consistent with the mathematical laws.

pdf bib
Improving Complex Knowledge Base Question Answering via Question-to-Action and Question-to-Question Alignment
Yechun Tang | Xiaoxia Cheng | Weiming Lu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Complex knowledge base question answering can be achieved by converting questions into sequences of predefined actions. However, there is a significant semantic and structural gap between natural language and action sequences, which makes this conversion difficult. In this paper, we introduce an alignment-enhanced complex question answering framework, called ALCQA, which mitigates this gap through question-to-action alignment and question-to-question alignment. We train a question rewriting model to align the question and each action, and utilize a pretrained language model to implicitly align the question and KG artifacts. Moreover, considering that similar questions correspond to similar action sequences, we retrieve top-k similar question-answer pairs at the inference stage through question-to-question alignment and propose a novel reward-guided action sequence selection strategy to select from candidate action sequences. We conduct experiments on CQA and WQSP datasets, and the results show that our approach outperforms state-of-the-art methods and obtains a 9.88% improvements in the F1 metric on CQA dataset. Our source code is available at https://github.com/TTTTTTTTy/ALCQA.

pdf bib
Query-based Instance Discrimination Network for Relational Triple Extraction
Zeqi Tan | Yongliang Shen | Xuming Hu | Wenqi Zhang | Xiaoxia Cheng | Weiming Lu | Yueting Zhuang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Joint entity and relation extraction has been a core task in the field of information extraction. Recent approaches usually consider the extraction of relational triples from a stereoscopic perspective, either learning a relation-specific tagger or separate classifiers for each relation type. However, they still suffer from error propagation, relation redundancy and lack of high-level connections between triples. To address these issues, we propose a novel query-based approach to construct instance-level representations for relational triples. By metric-based comparison between query embeddings and token embeddings, we can extract all types of triples in one step, thus eliminating the error propagation problem. In addition, we learn the instance-level representation of relational triples via contrastive learning. In this way, relational triples can not only enclose rich class-level semantics but also access to high-order global connections. Experimental results show that our proposed method achieves the state of the art on five widely used benchmarks.