Xiaoxiao Guo


2021

pdf bib
Narrative Question Answering with Cutting-Edge Open-Domain QA Techniques: A Comprehensive Study
Xiangyang Mou | Chenghao Yang | Mo Yu | Bingsheng Yao | Xiaoxiao Guo | Saloni Potdar | Hui Su
Transactions of the Association for Computational Linguistics, Volume 9

Abstract Recent advancements in open-domain question answering (ODQA), that is, finding answers from large open-domain corpus like Wikipedia, have led to human-level performance on many datasets. However, progress in QA over book stories (Book QA) lags despite its similar task formulation to ODQA. This work provides a comprehensive and quantitative analysis about the difficulty of Book QA: (1) We benchmark the research on the NarrativeQA dataset with extensive experiments with cutting-edge ODQA techniques. This quantifies the challenges Book QA poses, as well as advances the published state-of-the-art with a ∼7% absolute improvement on ROUGE-L. (2) We further analyze the detailed challenges in Book QA through human studies.1 Our findings indicate that the event-centric questions dominate this task, which exemplifies the inability of existing QA models to handle event-oriented scenarios.

2020

pdf bib
Frustratingly Hard Evidence Retrieval for QA Over Books
Xiangyang Mou | Mo Yu | Bingsheng Yao | Chenghao Yang | Xiaoxiao Guo | Saloni Potdar | Hui Su
Proceedings of the First Joint Workshop on Narrative Understanding, Storylines, and Events

A lot of progress has been made to improve question answering (QA) in recent years, but the special problem of QA over narrative book stories has not been explored in-depth. We formulate BookQA as an open-domain QA task given its similar dependency on evidence retrieval. We further investigate how state-of-the-art open-domain QA approaches can help BookQA. Besides achieving state-of-the-art on the NarrativeQA benchmark, our study also reveals the difficulty of evidence retrieval in books with a wealth of experiments and analysis - which necessitates future effort on novel solutions for evidence retrieval in BookQA.

pdf bib
Interactive Fiction Game Playing as Multi-Paragraph Reading Comprehension with Reinforcement Learning
Xiaoxiao Guo | Mo Yu | Yupeng Gao | Chuang Gan | Murray Campbell | Shiyu Chang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques. In contrast to previous text games with mostly synthetic texts, IF games pose language understanding challenges on the human-written textual descriptions of diverse and sophisticated game worlds and language generation challenges on the action command generation from less restricted combinatorial space. We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading Comprehension (MPRC) tasks. Our approaches utilize the context-query attention mechanisms and the structured prediction in MPRC to efficiently generate and evaluate action outputs and apply an object-centric historical observation retrieval strategy to mitigate the partial observability of the textual observations. Extensive experiments on the recent IF benchmark (Jericho) demonstrate clear advantages of our approaches achieving high winning rates and low data requirements compared to all previous approaches.

2019

pdf bib
Imposing Label-Relational Inductive Bias for Extremely Fine-Grained Entity Typing
Wenhan Xiong | Jiawei Wu | Deren Lei | Mo Yu | Shiyu Chang | Xiaoxiao Guo | William Yang Wang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Existing entity typing systems usually exploit the type hierarchy provided by knowledge base (KB) schema to model label correlations and thus improve the overall performance. Such techniques, however, are not directly applicable to more open and practical scenarios where the type set is not restricted by KB schema and includes a vast number of free-form types. To model the underlying label correlations without access to manually annotated label structures, we introduce a novel label-relational inductive bias, represented by a graph propagation layer that effectively encodes both global label co-occurrence statistics and word-level similarities. On a large dataset with over 10,000 free-form types, the graph-enhanced model equipped with an attention-based matching module is able to achieve a much higher recall score while maintaining a high-level precision. Specifically, it achieves a 15.3% relative F1 improvement and also less inconsistency in the outputs. We further show that a simple modification of our proposed graph layer can also improve the performance on a conventional and widely-tested dataset that only includes KB-schema types.

pdf bib
Sentence Embedding Alignment for Lifelong Relation Extraction
Hong Wang | Wenhan Xiong | Mo Yu | Xiaoxiao Guo | Shiyu Chang | William Yang Wang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Conventional approaches to relation extraction usually require a fixed set of pre-defined relations. Such requirement is hard to meet in many real applications, especially when new data and relations are emerging incessantly and it is computationally expensive to store all data and re-train the whole model every time new data and relations come in. We formulate such challenging problem as lifelong relation extraction and investigate memory-efficient incremental learning methods without catastrophically forgetting knowledge learned from previous tasks. We first investigate a modified version of the stochastic gradient methods with a replay memory, which surprisingly outperforms recent state-of-the-art lifelong learning methods. We further propose to improve this approach to alleviate the forgetting problem by anchoring the sentence embedding space. Specifically, we utilize an explicit alignment model to mitigate the sentence embedding distortion of learned model when training on new data and new relations. Experiment results on multiple benchmarks show that our proposed method significantly outperforms the state-of-the-art lifelong learning approaches.

pdf bib
Context-Aware Conversation Thread Detection in Multi-Party Chat
Ming Tan | Dakuo Wang | Yupeng Gao | Haoyu Wang | Saloni Potdar | Xiaoxiao Guo | Shiyu Chang | Mo Yu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In multi-party chat, it is common for multiple conversations to occur concurrently, leading to intermingled conversation threads in chat logs. In this work, we propose a novel Context-Aware Thread Detection (CATD) model that automatically disentangles these conversation threads. We evaluate our model on four real-world datasets and demonstrate an overall im-provement in thread detection accuracy over state-of-the-art benchmarks.

pdf bib
Simple yet Effective Bridge Reasoning for Open-Domain Multi-Hop Question Answering
Wenhan Xiong | Mo Yu | Xiaoxiao Guo | Hong Wang | Shiyu Chang | Murray Campbell | William Yang Wang
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

A key challenge of multi-hop question answering (QA) in the open-domain setting is to accurately retrieve the supporting passages from a large corpus. Existing work on open-domain QA typically relies on off-the-shelf information retrieval (IR) techniques to retrieve answer passages, i.e., the passages containing the groundtruth answers. However, IR-based approaches are insufficient for multi-hop questions, as the topic of the second or further hops is not explicitly covered by the question. To resolve this issue, we introduce a new subproblem of open-domain multi-hop QA, which aims to recognize the bridge (i.e., the anchor that links to the answer passage) from the context of a set of start passages with a reading comprehension model. This model, the bridge reasoner, is trained with a weakly supervised signal and produces the candidate answer passages for the passage reader to extract the answer. On the full-wiki HotpotQA benchmark, we significantly improve the baseline method by 14 point F1. Without using any memory inefficient contextual embeddings, our result is also competitive with the state-of-the-art that applies BERT in multiple modules.

pdf bib
Do Multi-hop Readers Dream of Reasoning Chains?
Haoyu Wang | Mo Yu | Xiaoxiao Guo | Rajarshi Das | Wenhan Xiong | Tian Gao
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

General Question Answering (QA) systems over texts require the multi-hop reasoning capability, i.e. the ability to reason with information collected from multiple passages to derive the answer. In this paper we conduct a systematic analysis to assess such an ability of various existing models proposed for multi-hop QA tasks. Specifically, our analysis investigates that whether providing the full reasoning chain of multiple passages, instead of just one final passage where the answer appears, could improve the performance of the existing QA models. Surprisingly, when using the additional evidence passages, the improvements of all the existing multi-hop reading approaches are rather limited, with the highest error reduction of 5.8% on F1 (corresponding to 1.3% improvement) from the BERT model. To better understand whether the reasoning chains indeed could help find the correct answers, we further develop a co-matching-based method that leads to 13.1% error reduction with passage chains when applied to two of our base readers (including BERT). Our results demonstrate the existence of the potential improvement using explicit multi-hop reasoning and the necessity to develop models with better reasoning abilities.

pdf bib
Multi-step Entity-centric Information Retrieval for Multi-Hop Question Answering
Rajarshi Das | Ameya Godbole | Dilip Kavarthapu | Zhiyu Gong | Abhishek Singhal | Mo Yu | Xiaoxiao Guo | Tian Gao | Hamed Zamani | Manzil Zaheer | Andrew McCallum
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

Multi-hop question answering (QA) requires an information retrieval (IR) system that can find multiple supporting evidence needed to answer the question, making the retrieval process very challenging. This paper introduces an IR technique that uses information of entities present in the initially retrieved evidence to learn to ‘hop’ to other relevant evidence. In a setting, with more than 5 million Wikipedia paragraphs, our approach leads to significant boost in retrieval performance. The retrieved evidence also increased the performance of an existing QA model (without any training) on the benchmark by 10.59 F1.

pdf bib
NE-Table: A Neural key-value table for Named Entities
Janarthanan Rajendran | Jatin Ganhotra | Xiaoxiao Guo | Mo Yu | Satinder Singh | Lazaros Polymenakos
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)

Many Natural Language Processing (NLP) tasks depend on using Named Entities (NEs) that are contained in texts and in external knowledge sources. While this is easy for humans, the present neural methods that rely on learned word embeddings may not perform well for these NLP tasks, especially in the presence of Out-Of-Vocabulary (OOV) or rare NEs. In this paper, we propose a solution for this problem, and present empirical evaluations on: a) a structured Question-Answering task, b) three related Goal-Oriented dialog tasks, and c) a Reading-Comprehension task, which show that the proposed method can be effective in dealing with both in-vocabulary and OOV NEs. We create extended versions of dialog bAbI tasks 1,2 and 4 and OOV versions of the CBT test set which are available at - https://github.com/IBM/ne-table-datasets/

pdf bib
Extracting Multiple-Relations in One-Pass with Pre-Trained Transformers
Haoyu Wang | Ming Tan | Mo Yu | Shiyu Chang | Dakuo Wang | Kun Xu | Xiaoxiao Guo | Saloni Potdar
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Many approaches to extract multiple relations from a paragraph require multiple passes over the paragraph. In practice, multiple passes are computationally expensive and this makes difficult to scale to longer paragraphs and larger text corpora. In this work, we focus on the task of multiple relation extractions by encoding the paragraph only once. We build our solution upon the pre-trained self-attentive models (Transformer), where we first add a structured prediction layer to handle extraction between multiple entity pairs, then enhance the paragraph embedding to capture multiple relational information associated with each entity with entity-aware attention. We show that our approach is not only scalable but can also perform state-of-the-art on the standard benchmark ACE 2005.

pdf bib
Self-Supervised Learning for Contextualized Extractive Summarization
Hong Wang | Xin Wang | Wenhan Xiong | Mo Yu | Xiaoxiao Guo | Shiyu Chang | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Existing models for extractive summarization are usually trained from scratch with a cross-entropy loss, which does not explicitly capture the global context at the document level. In this paper, we aim to improve this task by introducing three auxiliary pre-training tasks that learn to capture the document-level context in a self-supervised fashion. Experiments on the widely-used CNN/DM dataset validate the effectiveness of the proposed auxiliary tasks. Furthermore, we show that after pre-training, a clean model with simple building blocks is able to outperform previous state-of-the-art that are carefully designed.

pdf bib
Improving Question Answering over Incomplete KBs with Knowledge-Aware Reader
Wenhan Xiong | Mo Yu | Shiyu Chang | Xiaoxiao Guo | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We propose a new end-to-end question answering model, which learns to aggregate answer evidence from an incomplete knowledge base (KB) and a set of retrieved text snippets.Under the assumptions that structured data is easier to query and the acquired knowledge can help the understanding of unstructured text, our model first accumulates knowledge ofKB entities from a question-related KB sub-graph; then reformulates the question in the latent space and reads the text with the accumulated entity knowledge at hand. The evidence from KB and text are finally aggregated to predict answers. On the widely-used KBQA benchmark WebQSP, our model achieves consistent improvements across settings with different extents of KB incompleteness.

pdf bib
TWEETQA: A Social Media Focused Question Answering Dataset
Wenhan Xiong | Jiawei Wu | Hong Wang | Vivek Kulkarni | Mo Yu | Shiyu Chang | Xiaoxiao Guo | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

With social media becoming increasingly popular on which lots of news and real-time events are reported, developing automated question answering systems is critical to the effective-ness of many applications that rely on real-time knowledge. While previous datasets have concentrated on question answering (QA) for formal text like news and Wikipedia, we present the first large-scale dataset for QA over social media data. To ensure that the tweets we collected are useful, we only gather tweets used by journalists to write news articles. We then ask human annotators to write questions and answers upon these tweets. Unlike otherQA datasets like SQuAD in which the answers are extractive, we allow the answers to be abstractive. We show that two recently proposed neural models that perform well on formal texts are limited in their performance when applied to our dataset. In addition, even the fine-tuned BERT model is still lagging behind human performance with a large margin. Our results thus point to the need of improved QA systems targeting social media text.

2018

pdf bib
One-Shot Relational Learning for Knowledge Graphs
Wenhan Xiong | Mo Yu | Shiyu Chang | Xiaoxiao Guo | William Yang Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Knowledge graphs (KG) are the key components of various natural language processing applications. To further expand KGs’ coverage, previous studies on knowledge graph completion usually require a large number of positive examples for each relation. However, we observe long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge distilled by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.

pdf bib
Diverse Few-Shot Text Classification with Multiple Metrics
Mo Yu | Xiaoxiao Guo | Jinfeng Yi | Shiyu Chang | Saloni Potdar | Yu Cheng | Gerald Tesauro | Haoyu Wang | Bowen Zhou
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We study few-shot learning in natural language domains. Compared to many existing works that apply either metric-based or optimization-based meta-learning to image domain with low inter-task variance, we consider a more realistic setting, where tasks are diverse. However, it imposes tremendous difficulties to existing state-of-the-art metric-based algorithms since a single metric is insufficient to capture complex task variations in natural language domain. To alleviate the problem, we propose an adaptive metric learning approach that automatically determines the best weighted combination from a set of metrics obtained from meta-training tasks for a newly seen few-shot task. Extensive quantitative evaluations on real-world sentiment analysis and dialog intent classification datasets demonstrate that the proposed method performs favorably against state-of-the-art few shot learning algorithms in terms of predictive accuracy. We make our code and data available for further study.