Xiaoyan Cai


2024

pdf bib
MoDULA: Mixture of Domain-Specific and Universal LoRA for Multi-Task Learning
Yufei Ma | Zihan Liang | Huangyu Dai | Ben Chen | Dehong Gao | Zhuoran Ran | Wang Zihan | Linbo Jin | Wen Jiang | Guannan Zhang | Xiaoyan Cai | Libin Yang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The growing demand for larger-scale models in the development of Large Language Models (LLMs) poses challenges for efficient training within limited computational resources. Traditional fine-tuning methods often exhibit instability in multi-task learning and rely heavily on extensive training resources. Here, we propose MoDULA (Mixture of Domain-Specific and Universal LoRA), a novel Parameter Efficient Fine-Tuning (PEFT) Mixture-of-Expert (MoE) paradigm for improved fine-tuning and parameter efficiency in multi-task learning. The paradigm effectively improves the multi-task capability of the model by training universal experts, domain-specific experts, and routers separately. MoDULA-Res is a new method within the MoDULA paradigm, which maintains the model’s general capability by connecting universal and task-specific experts through residual connections. The experimental results demonstrate that the overall performance of the MoDULA-Flan and MoDULA-Res methods surpasses that of existing fine-tuning methods on various LLMs. Notably, MoDULA-Res achieves more significant performance improvements in multiple tasks while reducing training costs by over 80% without losing general capability. Moreover, MoDULA displays flexible pluggability, allowing for the efficient addition of new tasks without retraining existing experts from scratch. This progressive training paradigm circumvents data balancing issues, enhancing training efficiency and model stability. Overall, MoDULA provides a scalable, cost-effective solution for fine-tuning LLMs with enhanced parameter efficiency and generalization capability.

pdf bib
Self-Renewal Prompt Optimizing with Implicit Reasoning
Zihan Liang | Ben Chen | Zhuoran Ran | Zihan Wang | Huangyu Dai | Yufei Ma | Dehong Gao | Xiaoyan Cai | Libin Yang
Findings of the Association for Computational Linguistics: EMNLP 2024

The effectiveness of Large Language Models (LLMs) relies on their capacity to understand instructions and generate human-like responses. However, aligning LLMs with complex human preferences remains a significant challenge due to the potential misinterpretation of user prompts. Current methods for aligning LLM behaviors fall into two categories: output optimization (such as RLHF, RLAIF, and DPO) and input optimization (like OPRO and BPO). While both approaches aim to guide LLMs towards generating responses that align with desired objectives, the labor-intensive and intentions-inconsistent data annotation, as well as the strict and tedious training supervision, make them struggle to yield optimal results across all models. To address these shortcomings, we introduce a novel self-renewal approach called Prompt Optimization with Implicit Reasoning (POIR). It consists of two key components: 1) a model-specific and self-recirculating data collection method that leverages self-evaluation to enhance prompts in accordance with the model’s intrinsic logits, and 2) a prompt rewrite schema that injects implicit reasoning for direct preference learning. Through self-renewal optimization, POIR refines LLM outputs to better align with human preferences across various LLMs and tasks, without relying on supervised fine-tuning. Extensive experiments on a range of LLMs and tasks demonstrate POIR’s superior performance. We believe this advancement offers a novel paradigm for developing LLMs that are more attuned to user intentions.

2022

pdf bib
An Adaptive Logical Rule Embedding Model for Inductive Reasoning over Temporal Knowledge Graphs
Xin Mei | Libin Yang | Xiaoyan Cai | Zuowei Jiang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Temporal knowledge graphs (TKGs) extrapolation reasoning predicts future events based on historical information, which has great research significance and broad application value. Existing methods can be divided into embedding-based methods and logical rule-based methods. Embedding-based methods rely on learned entity and relation embeddings to make predictions and thus lack interpretability. Logical rule-based methods bring scalability problems due to being limited by the learned logical rules. We combine the two methods to capture deep causal logic by learning rule embeddings, and propose an interpretable model for temporal knowledge graph reasoning called adaptive logical rule embedding model for inductive reasoning (ALRE-IR). ALRE-IR can adaptively extract and assess reasons contained in historical events, and make predictions based on causal logic. Furthermore, we propose a one-class augmented matching loss for optimization. When evaluated on the ICEWS14, ICEWS0515 and ICEWS18 datasets, the performance of ALRE-IR outperforms other state-of-the-art baselines. The results also demonstrate that ALRE-IR still shows outstanding performance when transferred to related dataset with common relation vocabulary, indicating our proposed model has good zero-shot reasoning ability.

2018

pdf bib
A Skeleton-Based Model for Promoting Coherence Among Sentences in Narrative Story Generation
Jingjing Xu | Xuancheng Ren | Yi Zhang | Qi Zeng | Xiaoyan Cai | Xu Sun
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Narrative story generation is a challenging problem because it demands the generated sentences with tight semantic connections, which has not been well studied by most existing generative models. To address this problem, we propose a skeleton-based model to promote the coherence of generated stories. Different from traditional models that generate a complete sentence at a stroke, the proposed model first generates the most critical phrases, called skeleton, and then expands the skeleton to a complete and fluent sentence. The skeleton is not manually defined, but learned by a reinforcement learning method. Compared to the state-of-the-art models, our skeleton-based model can generate significantly more coherent text according to human evaluation and automatic evaluation. The G-score is improved by 20.1% in human evaluation.

2011

pdf bib
Simultaneous Clustering and Noise Detection for Theme-based Summarization
Xiaoyan Cai | Renxian Zhang | Dehong Gao | Wenjie Li
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf bib
Simultaneous Ranking and Clustering of Sentences: A Reinforcement Approach to Multi-Document Summarization
Xiaoyan Cai | Wenjie Li | You Ouyang | Hong Yan
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010)