Xiaoye Qu


pdf bib
Delving Deep into Regularity: A Simple but Effective Method for Chinese Named Entity Recognition
Yingjie Gu | Xiaoye Qu | Zhefeng Wang | Yi Zheng | Baoxing Huai | Nicholas Jing Yuan
Findings of the Association for Computational Linguistics: NAACL 2022

Recent years have witnessed the improving performance of Chinese Named Entity Recognition (NER) from proposing new frameworks or incorporating word lexicons. However, the inner composition of entity mentions in character-level Chinese NER has been rarely studied. Actually, most mentions of regular types have strong name regularity. For example, entities end with indicator words such as “公司 (company) ” or “银行 (bank)” usually belong to organization. In this paper, we propose a simple but effective method for investigating the regularity of entity spans in Chinese NER, dubbed as Regularity-Inspired reCOgnition Network (RICON). Specifically, the proposed model consists of two branches: a regularity-aware module and a regularity-agnostic module. The regularity-aware module captures the internal regularity of each span for better entity type prediction, while the regularity-agnostic module is employed to locate the boundary of entities and relieve the excessive attention to span regularity. An orthogonality space is further constructed to encourage two modules to extract different aspects of regularity features. To verify the effectiveness of our method, we conduct extensive experiments on three benchmark datasets and a practical medical dataset. The experimental results show that our RICON significantly outperforms previous state-of-the-art methods, including various lexicon-based methods.


pdf bib
Adaptive Proposal Generation Network for Temporal Sentence Localization in Videos
Daizong Liu | Xiaoye Qu | Jianfeng Dong | Pan Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We address the problem of temporal sentence localization in videos (TSLV). Traditional methods follow a top-down framework which localizes the target segment with pre-defined segment proposals. Although they have achieved decent performance, the proposals are handcrafted and redundant. Recently, bottom-up framework attracts increasing attention due to its superior efficiency. It directly predicts the probabilities for each frame as a boundary. However, the performance of bottom-up model is inferior to the top-down counterpart as it fails to exploit the segment-level interaction. In this paper, we propose an Adaptive Proposal Generation Network (APGN) to maintain the segment-level interaction while speeding up the efficiency. Specifically, we first perform a foreground-background classification upon the video and regress on the foreground frames to adaptively generate proposals. In this way, the handcrafted proposal design is discarded and the redundant proposals are decreased. Then, a proposal consolidation module is further developed to enhance the semantics of the generated proposals. Finally, we locate the target moments with these generated proposals following the top-down framework. Extensive experiments show that our proposed APGN significantly outperforms previous state-of-the-art methods on three challenging benchmarks.

pdf bib
Progressively Guide to Attend: An Iterative Alignment Framework for Temporal Sentence Grounding
Daizong Liu | Xiaoye Qu | Pan Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

A key solution to temporal sentence grounding (TSG) exists in how to learn effective alignment between vision and language features extracted from an untrimmed video and a sentence description. Existing methods mainly leverage vanilla soft attention to perform the alignment in a single-step process. However, such single-step attention is insufficient in practice, since complicated relations between inter- and intra-modality are usually obtained through multi-step reasoning. In this paper, we propose an Iterative Alignment Network (IA-Net) for TSG task, which iteratively interacts inter- and intra-modal features within multiple steps for more accurate grounding. Specifically, during the iterative reasoning process, we pad multi-modal features with learnable parameters to alleviate the nowhere-to-attend problem of non-matched frame-word pairs, and enhance the basic co-attention mechanism in a parallel manner. To further calibrate the misaligned attention caused by each reasoning step, we also devise a calibration module following each attention module to refine the alignment knowledge. With such iterative alignment scheme, our IA-Net can robustly capture the fine-grained relations between vision and language domains step-by-step for progressively reasoning the temporal boundaries. Extensive experiments conducted on three challenging benchmarks demonstrate that our proposed model performs better than the state-of-the-arts.

pdf bib
HacRED: A Large-Scale Relation Extraction Dataset Toward Hard Cases in Practical Applications
Qiao Cheng | Juntao Liu | Xiaoye Qu | Jin Zhao | Jiaqing Liang | Zhefeng Wang | Baoxing Huai | Nicholas Jing Yuan | Yanghua Xiao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021


pdf bib
Reasoning Step-by-Step: Temporal Sentence Localization in Videos via Deep Rectification-Modulation Network
Daizong Liu | Xiaoye Qu | Jianfeng Dong | Pan Zhou
Proceedings of the 28th International Conference on Computational Linguistics

Temporal sentence localization in videos aims to ground the best matched segment in an untrimmed video according to a given sentence query. Previous works in this field mainly rely on attentional frameworks to align the temporal boundaries by a soft selection. Although they focus on the visual content relevant to the query, these single-step attention are insufficient to model complex video contents and restrict the higher-level reasoning demand for this task. In this paper, we propose a novel deep rectification-modulation network (RMN), transforming this task into a multi-step reasoning process by repeating rectification and modulation. In each rectification-modulation layer, unlike existing methods directly conducting the cross-modal interaction, we first devise a rectification module to correct implicit attention misalignment which focuses on the wrong position during the cross-interaction process. Then, a modulation module is developed to capture the frame-to-frame relation with the help of sentence information for better correlating and composing the video contents over time. With multiple such layers cascaded in depth, our RMN progressively refines video and query interactions, thus enabling a further precise localization. Experimental evaluations on three public datasets show that the proposed method achieves state-of-the-art performance. Extensive ablation studies are carried out for the comprehensive analysis of the proposed method.


pdf bib
Adversarial Category Alignment Network for Cross-domain Sentiment Classification
Xiaoye Qu | Zhikang Zou | Yu Cheng | Yang Yang | Pan Zhou
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Cross-domain sentiment classification aims to predict sentiment polarity on a target domain utilizing a classifier learned from a source domain. Most existing adversarial learning methods focus on aligning the global marginal distribution by fooling a domain discriminator, without taking category-specific decision boundaries into consideration, which can lead to the mismatch of category-level features. In this work, we propose an adversarial category alignment network (ACAN), which attempts to enhance category consistency between the source domain and the target domain. Specifically, we increase the discrepancy of two polarity classifiers to provide diverse views, locating ambiguous features near the decision boundaries. Then the generator learns to create better features away from the category boundaries by minimizing this discrepancy. Experimental results on benchmark datasets show that the proposed method can achieve state-of-the-art performance and produce more discriminative features.