2024
pdf
bib
abs
Employing Glyphic Information for Chinese Event Extraction with Vision-Language Model
Xiaoyi Bao
|
Jinghang Gu
|
Zhongqing Wang
|
Minjie Qiang
|
Chu-Ren Huang
Findings of the Association for Computational Linguistics: EMNLP 2024
As a complex task that requires rich information input, features from various aspects have been utilized in event extraction. However, most of the previous works ignored the value of glyph, which could contain enriched semantic information and can not be fully expressed by the pre-trained embedding in hieroglyphic languages like Chinese. We argue that, compared with combining the sophisticated textual features, glyphic information from visual modality could provide us with extra and straight semantic information in extracting events. Motivated by this, we propose a glyphic multi-modal Chinese event extraction model with hieroglyphic images to capture the intra- and inter-character morphological structure from the sequence. Extensive experiments build a new state-of-the-art performance in the ACE2005 Chinese and KBP Eval 2017 dataset, which underscores the effectiveness of our proposed glyphic event extraction model, and more importantly, the glyphic feature can be obtained at nearly zero cost.
pdf
bib
abs
PolyuCBS at SMM4H 2024: LLM-based Medical Disorder and Adverse Drug Event Detection with Low-rank Adaptation
Zhai Yu
|
Xiaoyi Bao
|
Emmanuele Chersoni
|
Beatrice Portelli
|
Sophia Lee
|
Jinghang Gu
|
Chu-Ren Huang
Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks
This is the demonstration of systems and results of our team’s participation in the Social Medical Mining for Health (SMM4H) 2024 Shared Task. Our team participated in two tasks: Task 1 and Task 5. Task 5 requires the detection of tweet sentences that claim children’s medical disorders from certain users. Task 1 needs teams to extract and normalize Adverse Drug Event terms in the tweet sentence. The team selected several Pre-trained Language Models and generative Large Language Models to meet the requirements. Strategies to improve the performance include cloze test, prompt engineering, Low Rank Adaptation etc. The test result of our system has an F1 score of 0.935, Precision of 0.954 and Recall of 0.917 in Task 5 and an overall F1 score of 0.08 in Task 1.
2023
pdf
bib
abs
Opinion Tree Parsing for Aspect-based Sentiment Analysis
Xiaoyi Bao
|
Xiaotong Jiang
|
Zhongqing Wang
|
Yue Zhang
|
Guodong Zhou
Findings of the Association for Computational Linguistics: ACL 2023
Extracting sentiment elements using pre-trained generative models has recently led to large improvements in aspect-based sentiment analysis benchmarks. These models avoid explicit modeling of structure between sentiment elements, which are succinct yet lack desirable properties such as structure well-formedness guarantees or built-in elements alignments. In this study, we propose an opinion tree parsing model, aiming to parse all the sentiment elements from an opinion tree, which can explicitly reveal a more comprehensive and complete aspect-level sentiment structure. In particular, we first introduce a novel context-free opinion grammar to normalize the sentiment structure. We then employ a neural chart-based opinion tree parser to fully explore the correlations among sentiment elements and parse them in the opinion tree form. Extensive experiments show the superiority of our proposed model and the capacity of the opinion tree parser with the proposed context-free opinion grammar. More importantly, our model is much faster than previous models.
pdf
bib
abs
Exploring Graph Pre-training for Aspect-based Sentiment Analysis
Xiaoyi Bao
|
Zhongqing Wang
|
Guodong Zhou
Findings of the Association for Computational Linguistics: EMNLP 2023
Existing studies tend to extract the sentiment elements in a generative manner in order to avoid complex modeling. Despite their effectiveness, they ignore importance of the relationships between sentiment elements that could be crucial, making the large pre-trained generative models sub-optimal for modeling sentiment knowledge. Therefore, we introduce two pre-training paradigms to improve the generation model by exploring graph pre-training that targeting to strengthen the model in capturing the elements’ relationships. Specifically, We first employ an Element-level Graph Pre-training paradigm, which is designed to improve the structure awareness of the generative model. Then, we design a Task Decomposition Pre-training paradigm to make the generative model generalizable and robust against various irregular sentiment quadruples. Extensive experiments show the superiority of our proposed method, validate the correctness of our motivation.