Xiaoyu Song


2025

pdf bib
Scene Graph and Dependency Grammar Enhanced Remote Sensing Change Caption Network (SGD-RSCCN)
Qiaoli Sun | Yan Wang | Xiaoyu Song
Proceedings of the 31st International Conference on Computational Linguistics

With the continuous advancement of remote sensing technology, it is easier to obtain high-resolution, multi-temporal and multi-spectral images. The images carry rich information of ground objects. However, how to effectively extract useful information from the complex image data and convert it into understandable semantic descriptions remains a challenge. To deal with the challenges, we propose a Scene Graph and Dependency Grammar Enhanced Remote Sensing Change Caption Network (SGD-RSCCN) to improve the accuracy and naturalness of extracting and describing change information from remote sensing images. By combining advanced visual analysis technology and natural language processing technology, the network not only optimizes the problem of insufficient understanding of complex scenes, but also enhances the ability to capture dynamic changes, thereby generating more accurate and smooth natural language description. In addition, we also proposes the decoder based on prior knowledge, which further improves the readability and comprehensibility of the description. Extensive experiments on LEVIR-CC and Dubai-CC datasets verify the advantages of the proposed method in generating accurate and true descriptions.