Xifeng Yan


2021

pdf bib
Task-adaptive Pre-training and Self-training are Complementary for Natural Language Understanding
Shiyang Li | Semih Yavuz | Wenhu Chen | Xifeng Yan
Findings of the Association for Computational Linguistics: EMNLP 2021

Task-adaptive pre-training (TAPT) and Self-training (ST) have emerged as the major semi-supervised approaches to improve natural language understanding (NLU) tasks with massive amount of unlabeled data. However, it’s unclear whether they learn similar representations or they can be effectively combined. In this paper, we show that TAPT and ST can be complementary with simple TFS protocol by following TAPT -> Finetuning -> Self-training (TFS) process. Experimental results show that TFS protocol can effectively utilize unlabeled data to achieve strong combined gains consistently across six datasets covering sentiment classification, paraphrase identification, natural language inference, named entity recognition and dialogue slot classification. We investigate various semi-supervised settings and consistently show that gains from TAPT and ST can be strongly additive by following TFS procedure. We hope that TFS could serve as an important semi-supervised baseline for future NLP studies.

pdf bib
Lifelong Learning of Hate Speech Classification on Social Media
Jing Qian | Hong Wang | Mai ElSherief | Xifeng Yan
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Existing work on automated hate speech classification assumes that the dataset is fixed and the classes are pre-defined. However, the amount of data in social media increases every day, and the hot topics changes rapidly, requiring the classifiers to be able to continuously adapt to new data without forgetting the previously learned knowledge. This ability, referred to as lifelong learning, is crucial for the real-word application of hate speech classifiers in social media. In this work, we propose lifelong learning of hate speech classification on social media. To alleviate catastrophic forgetting, we propose to use Variational Representation Learning (VRL) along with a memory module based on LB-SOINN (Load-Balancing Self-Organizing Incremental Neural Network). Experimentally, we show that combining variational representation learning and the LB-SOINN memory module achieves better performance than the commonly-used lifelong learning techniques.

2020

pdf bib
KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation
Wenhu Chen | Yu Su | Xifeng Yan | William Yang Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Data-to-text generation has recently attracted substantial interests due to its wide applications. Existing methods have shown impressive performance on an array of tasks. However, they rely on a significant amount of labeled data for each task, which is costly to acquire and thus limits their application to new tasks and domains. In this paper, we propose to leverage pre-training and transfer learning to address this issue. We propose a knowledge-grounded pre-training (KGPT), which consists of two parts, 1) a general knowledge-grounded generation model to generate knowledge-enriched text. 2) a pre-training paradigm on a massive knowledge-grounded text corpus crawled from the web. The pre-trained model can be fine-tuned on various data-to-text generation tasks to generate task-specific text. We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness. Under the fully-supervised setting, our model can achieve remarkable gains over the known baselines. Under zero-shot setting, our model without seeing any examples achieves over 30 ROUGE-L on WebNLG while all other baselines fail. Under the few-shot setting, our model only needs about one-fifteenth as many labeled examples to achieve the same level of performance as baseline models. These experiments consistently prove the strong generalization ability of our proposed framework.

2019

pdf bib
How Large a Vocabulary Does Text Classification Need? A Variational Approach to Vocabulary Selection
Wenhu Chen | Yu Su | Yilin Shen | Zhiyu Chen | Xifeng Yan | William Yang Wang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

With the rapid development in deep learning, deep neural networks have been widely adopted in many real-life natural language applications. Under deep neural networks, a pre-defined vocabulary is required to vectorize text inputs. The canonical approach to select pre-defined vocabulary is based on the word frequency, where a threshold is selected to cut off the long tail distribution. However, we observed that such a simple approach could easily lead to under-sized vocabulary or over-sized vocabulary issues. Therefore, we are interested in understanding how the end-task classification accuracy is related to the vocabulary size and what is the minimum required vocabulary size to achieve a specific performance. In this paper, we provide a more sophisticated variational vocabulary dropout (VVD) based on variational dropout to perform vocabulary selection, which can intelligently select the subset of the vocabulary to achieve the required performance. To evaluate different algorithms on the newly proposed vocabulary selection problem, we propose two new metrics: Area Under Accuracy-Vocab Curve and Vocab Size under X% Accuracy Drop. Through extensive experiments on various NLP classification tasks, our variational framework is shown to significantly outperform the frequency-based and other selection baselines on these metrics.

pdf bib
Global Textual Relation Embedding for Relational Understanding
Zhiyu Chen | Hanwen Zha | Honglei Liu | Wenhu Chen | Xifeng Yan | Yu Su
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Pre-trained embeddings such as word embeddings and sentence embeddings are fundamental tools facilitating a wide range of downstream NLP tasks. In this work, we investigate how to learn a general-purpose embedding of textual relations, defined as the shortest dependency path between entities. Textual relation embedding provides a level of knowledge between word/phrase level and sentence level, and we show that it can facilitate downstream tasks requiring relational understanding of the text. To learn such an embedding, we create the largest distant supervision dataset by linking the entire English ClueWeb09 corpus to Freebase. We use global co-occurrence statistics between textual and knowledge base relations as the supervision signal to train the embedding. Evaluation on two relational understanding tasks demonstrates the usefulness of the learned textual relation embedding. The data and code can be found at https://github.com/czyssrs/GloREPlus

pdf bib
Semantically Conditioned Dialog Response Generation via Hierarchical Disentangled Self-Attention
Wenhu Chen | Jianshu Chen | Pengda Qin | Xifeng Yan | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Semantically controlled neural response generation on limited-domain has achieved great performance. However, moving towards multi-domain large-scale scenarios are shown to be difficult because the possible combinations of semantic inputs grow exponentially with the number of domains. To alleviate such scalability issue, we exploit the structure of dialog acts to build a multi-layer hierarchical graph, where each act is represented as a root-to-leaf route on the graph. Then, we incorporate such graph structure prior as an inductive bias to build a hierarchical disentangled self-attention network, where we disentangle attention heads to model designated nodes on the dialog act graph. By activating different (disentangled) heads at each layer, combinatorially many dialog act semantics can be modeled to control the neural response generation. On the large-scale Multi-Domain-WOZ dataset, our model can yield a significant improvement over the baselines on various automatic and human evaluation metrics.

2018

pdf bib
XL-NBT: A Cross-lingual Neural Belief Tracking Framework
Wenhu Chen | Jianshu Chen | Yu Su | Xin Wang | Dong Yu | Xifeng Yan | William Yang Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Task-oriented dialog systems are becoming pervasive, and many companies heavily rely on them to complement human agents for customer service in call centers. With globalization, the need for providing cross-lingual customer support becomes more urgent than ever. However, cross-lingual support poses great challenges—it requires a large amount of additional annotated data from native speakers. In order to bypass the expensive human annotation and achieve the first step towards the ultimate goal of building a universal dialog system, we set out to build a cross-lingual state tracking framework. Specifically, we assume that there exists a source language with dialog belief tracking annotations while the target languages have no annotated dialog data of any form. Then, we pre-train a state tracker for the source language as a teacher, which is able to exploit easy-to-access parallel data. We then distill and transfer its own knowledge to the student state tracker in target languages. We specifically discuss two types of common parallel resources: bilingual corpus and bilingual dictionary, and design different transfer learning strategies accordingly. Experimentally, we successfully use English state tracker as the teacher to transfer its knowledge to both Italian and German trackers and achieve promising results.

pdf bib
What It Takes to Achieve 100% Condition Accuracy on WikiSQL
Semih Yavuz | Izzeddin Gur | Yu Su | Xifeng Yan
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

WikiSQL is a newly released dataset for studying the natural language sequence to SQL translation problem. The SQL queries in WikiSQL are simple: Each involves one relation and does not have any join operation. Despite of its simplicity, none of the publicly reported structured query generation models can achieve an accuracy beyond 62%, which is still far from enough for practical use. In this paper, we ask two questions, “Why is the accuracy still low for such simple queries?” and “What does it take to achieve 100% accuracy on WikiSQL?” To limit the scope of our study, we focus on the WHERE clause in SQL. The answers will help us gain insights about the directions we should explore in order to further improve the translation accuracy. We will then investigate alternative solutions to realize the potential ceiling performance on WikiSQL. Our proposed solution can reach up to 88.6% condition accuracy on the WikiSQL dataset.

pdf bib
DialSQL: Dialogue Based Structured Query Generation
Izzeddin Gur | Semih Yavuz | Yu Su | Xifeng Yan
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The recent advance in deep learning and semantic parsing has significantly improved the translation accuracy of natural language questions to structured queries. However, further improvement of the existing approaches turns out to be quite challenging. Rather than solely relying on algorithmic innovations, in this work, we introduce DialSQL, a dialogue-based structured query generation framework that leverages human intelligence to boost the performance of existing algorithms via user interaction. DialSQL is capable of identifying potential errors in a generated SQL query and asking users for validation via simple multi-choice questions. User feedback is then leveraged to revise the query. We design a generic simulator to bootstrap synthetic training dialogues and evaluate the performance of DialSQL on the WikiSQL dataset. Using SQLNet as a black box query generation tool, DialSQL improves its performance from 61.3% to 69.0% using only 2.4 validation questions per dialogue.

pdf bib
Global Relation Embedding for Relation Extraction
Yu Su | Honglei Liu | Semih Yavuz | Izzeddin Gür | Huan Sun | Xifeng Yan
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

pdf bib
Variational Knowledge Graph Reasoning
Wenhu Chen | Wenhan Xiong | Xifeng Yan | William Yang Wang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (Diva) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, Diva is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.

2017

pdf bib
Recovering Question Answering Errors via Query Revision
Semih Yavuz | Izzeddin Gur | Yu Su | Xifeng Yan
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The existing factoid QA systems often lack a post-inspection component that can help models recover from their own mistakes. In this work, we propose to crosscheck the corresponding KB relations behind the predicted answers and identify potential inconsistencies. Instead of developing a new model that accepts evidences collected from these relations, we choose to plug them back to the original questions directly and check if the revised question makes sense or not. A bidirectional LSTM is applied to encode revised questions. We develop a scoring mechanism over the revised question encodings to refine the predictions of a base QA system. This approach can improve the F1 score of STAGG (Yih et al., 2015), one of the leading QA systems, from 52.5% to 53.9% on WEBQUESTIONS data.

pdf bib
Cross-domain Semantic Parsing via Paraphrasing
Yu Su | Xifeng Yan
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Existing studies on semantic parsing mainly focus on the in-domain setting. We formulate cross-domain semantic parsing as a domain adaptation problem: train a semantic parser on some source domains and then adapt it to the target domain. Due to the diversity of logical forms in different domains, this problem presents unique and intriguing challenges. By converting logical forms into canonical utterances in natural language, we reduce semantic parsing to paraphrasing, and develop an attentive sequence-to-sequence paraphrase model that is general and flexible to adapt to different domains. We discover two problems, small micro variance and large macro variance, of pre-trained word embeddings that hinder their direct use in neural networks, and propose standardization techniques as a remedy. On the popular Overnight dataset, which contains eight domains, we show that both cross-domain training and standardized pre-trained word embeddings can bring significant improvement.

2016

pdf bib
Improving Semantic Parsing via Answer Type Inference
Semih Yavuz | Izzeddin Gur | Yu Su | Mudhakar Srivatsa | Xifeng Yan
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
On Generating Characteristic-rich Question Sets for QA Evaluation
Yu Su | Huan Sun | Brian Sadler | Mudhakar Srivatsa | Izzeddin Gür | Zenghui Yan | Xifeng Yan
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing