Xikai Liu


2023

pdf bib
2INER: Instructive and In-Context Learning on Few-Shot Named Entity Recognition
Jiasheng Zhang | Xikai Liu | Xinyi Lai | Yan Gao | Shusen Wang | Yao Hu | Yiqing Lin
Findings of the Association for Computational Linguistics: EMNLP 2023

Prompt-based learning has emerged as a powerful technique in natural language processing (NLP) due to its ability to leverage pre-training knowledge for downstream few-shot tasks. In this paper, we propose 2INER, a novel text-to-text framework for Few-Shot Named Entity Recognition (NER) tasks. Our approach employs instruction finetuning based on InstructionNER to enable the model to effectively comprehend and process task-specific instructions, including both main and auxiliary tasks. We also introduce a new auxiliary task, called Type Extracting, to enhance the model’s understanding of entity types in the overall semantic context of a sentence. To facilitate in-context learning, we concatenate examples to the input, enabling the model to learn from additional contextual information. Experimental results on four datasets demonstrate that our approach outperforms existing Few-Shot NER methods and remains competitive with state-of-the-art standard NER algorithms.

2019

pdf bib
Telling the Whole Story: A Manually Annotated Chinese Dataset for the Analysis of Humor in Jokes
Dongyu Zhang | Heting Zhang | Xikai Liu | Hongfei Lin | Feng Xia
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Humor plays important role in human communication, which makes it important problem for natural language processing. Prior work on the analysis of humor focuses on whether text is humorous or not, or the degree of funniness, but this is insufficient to explain why it is funny. We therefore create a dataset on humor with 9,123 manually annotated jokes in Chinese. We propose a novel annotation scheme to give scenarios of how humor arises in text. Specifically, our annotations of linguistic humor not only contain the degree of funniness, like previous work, but they also contain key words that trigger humor as well as character relationship, scene, and humor categories. We report reasonable agreement between annota-tors. We also conduct an analysis and exploration of the dataset. To the best of our knowledge, we are the first to approach humor annotation for exploring the underlying mechanism of the use of humor, which may contribute to a significantly deeper analysis of humor. We also contribute with a scarce and valuable dataset, which we will release publicly.

pdf bib
Transformer-Based Capsule Network For Stock Movement Prediction
Jintao Liu | Hongfei Lin | Xikai Liu | Bo Xu | Yuqi Ren | Yufeng Diao | Liang Yang
Proceedings of the First Workshop on Financial Technology and Natural Language Processing