Extracting semantic topics from short texts presents a significant challenge in the field of data mining. While efforts have been made to mitigate data sparsity issue, the limited length of short documents also results in the absence of semantically relevant words, causing biased evidence lower bound and incomplete labels for likelihood maximization. We refer to this issue as the label sparsity problem. To combat this problem, we propose kNNTM, a neural short text topic model that incorporates a k-Nearest-Neighbor-based label completion algorithm by augmenting the reconstruction label with k-nearest documents to complement these relevant but unobserved words. Furthermore, seeking a precise reflection of distances between documents, we propose a fused multi-view distances metric that takes both local word similarities and global topic semantics into consideration. Extensive experiments on multiple public short-text datasets show that kNNTM model outperforms the state-of-the-art baseline models and can derive both high-quality topics and document representations.
In reasoning tasks, even a minor error can cascade into inaccurate results, leading to suboptimal performance of large language models insuch domains. Earlier fine-tuning approaches sought to mitigate this by leveraging more precise supervisory signals from human labeling, larger models, or self-sampling, although at a high cost. Conversely, we develop a method that avoids external resources, relying instead on introducing perturbations to the input. Our training approach randomly masks certain tokens within the chain of thought, a techniquewe found to be particularly effective for reasoning tasks. When applied to fine-tuning with GSM8K on Llama-2-7B, this method achieveda 5% improvement in GSM8K accuracy and a 10% improvement in GSM-IC accuracy over standard supervised fine-tuning with a few codes modified. Furthermore, it is complementary to existing methods. When integrated with related explicit data augmentation methods, it leads to improvements across five datasets of various augmentation methods, as well as two different base models. We further investigate the mechanisms behind this improvement through case studies and quantitative analysis, suggesting that our approach may provide superior support for the model in capturing long-distance dependencies, especially those related to questions. This enhancement could deepen understanding of the premises in questions and prior steps.
Recently, the advent of large language models (LLMs) has revolutionized generative agents. Among them, Role-Playing Conversational Agents (RPCAs) attract considerable attention due to their ability to emotionally engage users. However, the absence of a comprehensive benchmark impedes progress in this field. To bridge this gap, we introduce CharacterEval, a Chinese benchmark for comprehensive RPCA assessment, complemented by a tailored high-quality dataset. The dataset comprises 1,785 multi-turn role-playing dialogues, encompassing 11,376 examples and featuring 77 characters derived from Chinese novels and scripts. It was carefully constructed, beginning with initial dialogue extraction via GPT-4, followed by rigorous human-led quality control, and enhanced with in-depth character profiles sourced from Baidu Baike. CharacterEval employs a multifaceted evaluation approach, encompassing thirteen targeted metrics on four dimensions. To facilitate the convenient evaluation for these subjective metrics in CharacterEval, we further developed CharacterRM, a role-playing reward model based on human annotations, which has a higher correlation with human judgment compared to GPT-4. Comprehensive experiments on CharacterEval demonstrate that Chinese LLMs exhibit more promising capabilities than GPT-4 in Chinese role-playing conversation.
Psychological measurement is essential for mental health, self-understanding, and personal development. Traditional methods, such as self-report scales and psychologist interviews, often face challenges with engagement and accessibility. While game-based and LLM-based tools have been explored to improve user interest and automate assessment, they struggle to balance engagement with generalizability. In this work, we propose PsychoGAT (Psychological Game AgenTs) to achieve a generic gamification of psychological assessment. The main insight is that powerful LLMs can function both as adept psychologists and innovative game designers. By incorporating LLM agents into designated roles and carefully managing their interactions, PsychoGAT can transform any standardized scales into personalized and engaging interactive fiction games. To validate the proposed method, we conduct psychometric evaluations to assess its effectiveness and employ human evaluators to examine the generated content across various psychological constructs, including depression, cognitive distortions, and personality traits. Results demonstrate that PsychoGAT serves as an effective assessment tool, achieving statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity. Moreover, human evaluations confirm PsychoGAT’s enhancements in content coherence, interactivity, interest, immersion, and satisfaction.
A robust summarization system should be able to capture the gist of the document, regardless of the specific word choices or noise in the input. In this work, we first explore the summarization models’ robustness against perturbations including word-level synonym substitution and noise. To create semantic-consistent substitutes, we propose a SummAttacker, which is an efficient approach to generating adversarial samples based on pre-trained language models. Experimental results show that state-of-the-art summarization models have a significant decrease in performance on adversarial and noisy test sets. Next, we analyze the vulnerability of the summarization systems and explore improving the robustness by data augmentation. Specifically, the first vulnerability factor we found is the low diversity of the training inputs. Correspondingly, we expose the encoder to more diverse cases created by SummAttacker in the input space. The second factor is the vulnerability of the decoder, and we propose an augmentation in the latent space of the decoder to improve its robustness. Concretely, we create virtual cases by manifold softmixing two decoder hidden states of similar semantic meanings. Experimental results on Gigaword and CNN/DM datasets demonstrate that our approach achieves significant improvements over strong baselines and exhibits higher robustness on noisy, attacked, and clean datasets
Efforts have been made to apply topic seed words to improve the topic interpretability of topic models. However, due to the semantic diversity of natural language, supervisions from seed words could be ambiguous, making it hard to be incorporated into the current neural topic models. In this paper, we propose SeededNTM, a neural topic model enhanced with supervisions from seed words on both word and document levels. We introduce a context-dependency assumption to alleviate the ambiguities with context document information, and an auto-adaptation mechanism to automatically balance between multi-level information. Moreover, an intra-sample consistency regularizer is proposed to deal with noisy supervisions via encouraging perturbation and semantic consistency. Extensive experiments on multiple datasets show that SeededNTM can derive semantically meaningful topics and outperforms the state-of-the-art seeded topic models in terms of topic quality and classification accuracy.
Word embeddings learned from massive text collections have demonstrated significant levels of discriminative biases. However, debias on the Chinese language, one of the most spoken languages, has been less explored. Meanwhile, existing literature relies on manually created supplementary data, which is time- and energy-consuming. In this work, we propose the first Chinese Gender-neutral word Embedding model (CGE) based on Word2vec, which learns gender-neutral word embeddings without any labeled data. Concretely, CGE utilizes and emphasizes the rich feminine and masculine information contained in radicals, i.e., a kind of component in Chinese characters, during the training procedure. This consequently alleviates discriminative gender biases. Experimental results on public benchmark datasets show that our unsupervised method outperforms the state-of-the-art supervised debiased word embedding models without sacrificing the functionality of the embedding model.
In a citation graph, adjacent paper nodes share related scientific terms and topics. The graph thus conveys unique structure information of document-level relatedness that can be utilized in the paper summarization task, for exploring beyond the intra-document information.In this work, we focus on leveraging citation graphs to improve scientific paper extractive summarization under different settings.We first propose a Multi-granularity Unsupervised Summarization model (MUS) as a simple and low-cost solution to the task.MUS finetunes a pre-trained encoder model on the citation graph by link prediction tasks.Then, the abstract sentences are extracted from the corresponding paper considering multi-granularity information.Preliminary results demonstrate that citation graph is helpful even in a simple unsupervised framework.Motivated by this, we next propose a Graph-based Supervised Summarizationmodel (GSS) to achieve more accurate results on the task when large-scale labeled data are available.Apart from employing the link prediction as an auxiliary task, GSS introduces a gated sentence encoder and a graph information fusion module to take advantage of the graph information to polish the sentence representation.Experiments on a public benchmark dataset show that MUS and GSS bring substantial improvements over the prior state-of-the-art model.
Despite recent advancements in automated speech recognition (ASR) technologies, reports of unequal performance across speakers of different demographic groups abound. At the same time, the focus on performance metrics such as the Word Error Rate (WER) in prior studies limit the specificity and scope of recommendations that can be offered for system engineering to overcome these challenges. The current study bridges this gap by investigating the performance of Otter’s automatic captioning system on native and non-native English speakers of different language background through a linguistic analysis of segment-level errors. By examining language-specific error profiles for vowels and consonants motivated by linguistic theory, we find that certain categories of errors can be predicted from the phonological structure of a speaker’s native language.
Empirical natural language processing (NLP) systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components, ranging from data ingestion, human annotation, to text retrieval, analysis, generation, and visualization. We establish a unified open-source framework to support fast development of such sophisticated NLP workflows in a composable manner. The framework introduces a uniform data representation to encode heterogeneous results by a wide range of NLP tasks. It offers a large repository of processors for NLP tasks, visualization, and annotation, which can be easily assembled with full interoperability under the unified representation. The highly extensible framework allows plugging in custom processors from external off-the-shelf NLP and deep learning libraries. The whole framework is delivered through two modularized yet integratable open-source projects, namely Forte (for workflow infrastructure and NLP function processors) and Stave (for user interaction, visualization, and annotation).