Xin Niu
2023
Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot Text Classification Tasks
Haoqi Zheng
|
Qihuang Zhong
|
Liang Ding
|
Zhiliang Tian
|
Xin Niu
|
Changjian Wang
|
Dongsheng Li
|
Dacheng Tao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Text classification tasks often encounter few-shot scenarios with limited labeled data, and addressing data scarcity is crucial. Data augmentation with mixup merges sample pairs to generate new pseudos, which can relieve the data deficiency issue in text classification. However, the quality of pseudo-samples generated by mixup exhibits significant variations. Most of the mixup methods fail to consider the varying degree of learning difficulty in different stages of training. And mixup generates new samples with one-hot labels, which encourages the model to produce a high prediction score for the correct class that is much larger than other classes, resulting in the model’s over-confidence. In this paper, we propose a self-evolution learning (SE) based mixup approach for data augmentation in text classification, which can generate more adaptive and model-friendly pseudo samples for the model training. SE caters to the growth of the model learning ability and adapts to the ability when generating training samples. To alleviate the model over-confidence, we introduce an instance-specific label smoothing regularization approach, which linearly interpolates the model’s output and one-hot labels of the original samples to generate new soft labels for label mixing up. Through experimental analysis, experiments show that our SE brings consistent and significant improvements upon different mixup methods. In-depth analyses demonstrate that SE enhances the model’s generalization ability.
Search
Fix data
Co-authors
- Liang Ding 1
- Dongsheng Li 1
- Dacheng Tao 1
- Zhiliang Tian 1
- Changjian Wang 1
- show all...