Xin Zheng


2021

pdf bib
Adaptive Nearest Neighbor Machine Translation
Xin Zheng | Zhirui Zhang | Junliang Guo | Shujian Huang | Boxing Chen | Weihua Luo | Jiajun Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

kNN-MT, recently proposed by Khandelwal et al. (2020a), successfully combines pre-trained neural machine translation (NMT) model with token-level k-nearest-neighbor (kNN) retrieval to improve the translation accuracy. However, the traditional kNN algorithm used in kNN-MT simply retrieves a same number of nearest neighbors for each target token, which may cause prediction errors when the retrieved neighbors include noises. In this paper, we propose Adaptive kNN-MT to dynamically determine the number of k for each target token. We achieve this by introducing a light-weight Meta-k Network, which can be efficiently trained with only a few training samples. On four benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively filter out the noises in retrieval results and significantly outperforms the vanilla kNN-MT model. Even more noteworthy is that the Meta-k Network learned on one domain could be directly applied to other domains and obtain consistent improvements, illustrating the generality of our method. Our implementation is open-sourced at https://github.com/zhengxxn/adaptive-knn-mt.

pdf bib
Non-Parametric Unsupervised Domain Adaptation for Neural Machine Translation
Xin Zheng | Zhirui Zhang | Shujian Huang | Boxing Chen | Jun Xie | Weihua Luo | Jiajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2021

Recently, kNN-MT (Khandelwal et al., 2020) has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level k-nearest-neighbor (kNN) retrieval to achieve domain adaptation without retraining. Despite being conceptually attractive, it heavily relies on high-quality in-domain parallel corpora, limiting its capability on unsupervised domain adaptation, where in-domain parallel corpora are scarce or nonexistent. In this paper, we propose a novel framework that directly uses in-domain monolingual sentences in the target language to construct an effective datastore for k-nearest-neighbor retrieval. To this end, we first introduce an autoencoder task based on the target language, and then insert lightweight adapters into the original NMT model to map the token-level representation of this task to the ideal representation of the translation task. Experiments on multi-domain datasets demonstrate that our proposed approach significantly improves the translation accuracy with target-side monolingual data, while achieving comparable performance with back-translation. Our implementation is open-sourced at https://github. com/zhengxxn/UDA-KNN.

2019

pdf bib
Subtopic-driven Multi-Document Summarization
Xin Zheng | Aixin Sun | Jing Li | Karthik Muthuswamy
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In multi-document summarization, a set of documents to be summarized is assumed to be on the same topic, known as the underlying topic in this paper. That is, the underlying topic can be collectively represented by all the documents in the set. Meanwhile, different documents may cover various different subtopics and the same subtopic can be across several documents. Inspired by topic model, the underlying topic of a document set can also be viewed as a collection of different subtopics of different importance. In this paper, we propose a summarization model called STDS. The model generates the underlying topic representation from both document view and subtopic view in parallel. The learning objective is to minimize the distance between the representations learned from the two views. The contextual information is encoded through a hierarchical RNN architecture. Sentence salience is estimated in a hierarchical way with subtopic salience and relative sentence salience, by considering the contextual information. Top ranked sentences are then extracted as a summary. Note that the notion of subtopic enables us to bring in additional information (e.g. comments to news articles) that is helpful for document summarization. Experimental results show that the proposed solution outperforms state-of-the-art methods on benchmark datasets.