Xing Han Lu


2024

pdf bib
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Vaibhav Adlakha | Parishad BehnamGhader | Xing Han Lu | Nicholas Meade | Siva Reddy
Transactions of the Association for Computational Linguistics, Volume 12

Instruction-following models are attractive alternatives to fine-tuned approaches for question answering (QA). By simply prepending relevant documents and an instruction to their input, these models can be adapted to various information domains and tasks without additional training. However, these models tend to produce verbose responses with supplementary information, which makes traditional QA metrics like exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we evaluate instruction-following models along two fronts: 1) how well they satisfy user’s information need (correctness), and 2) whether they disseminate information supported by the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness and propose simple token-overlap metrics that correlate highly with human judgments. Our analysis reveals that for correctness, instruction-following models perform comparably to models specifically fine-tuned for that task. However, they struggle to accurately judge the relevance of the provided knowledge and often hallucinate in their responses. We hope our work encourages more holistic evaluation of instruction-following models for QA. Our code and human annotation data is available at https://github.com/McGill-NLP/instruct-qa.

2023

pdf bib
The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents
Xing Han Lu | Siva Reddy | Harm de Vries
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

We introduce the StatCan Dialogue Dataset consisting of 19,379 conversation turns between agents working at Statistics Canada and online users looking for published data tables. The conversations stem from genuine intents, are held in English or French, and lead to agents retrieving one of over 5000 complex data tables. Based on this dataset, we propose two tasks: (1) automatic retrieval of relevant tables based on a on-going conversation, and (2) automatic generation of appropriate agent responses at each turn. We investigate the difficulty of each task by establishing strong baselines. Our experiments on a temporal data split reveal that all models struggle to generalize to future conversations, as we observe a significant drop in performance across both tasks when we move from the validation to the test set. In addition, we find that response generation models struggle to decide when to return a table. Considering that the tasks pose significant challenges to existing models, we encourage the community to develop models for our task, which can be directly used to help knowledge workers find relevant tables for live chat users.

2022

pdf bib
Using Interactive Feedback to Improve the Accuracy and Explainability of Question Answering Systems Post-Deployment
Zichao Li | Prakhar Sharma | Xing Han Lu | Jackie Cheung | Siva Reddy
Findings of the Association for Computational Linguistics: ACL 2022

Most research on question answering focuses on the pre-deployment stage; i.e., building an accurate model for deployment. In this paper, we ask the question: Can we improve QA systems further post-deployment based on user interactions? We focus on two kinds of improvements: 1) improving the QA system’s performance itself, and 2) providing the model with the ability to explain the correctness or incorrectness of an answer. We collect a retrieval-based QA dataset, FeedbackQA, which contains interactive feedback from users. We collect this dataset by deploying a base QA system to crowdworkers who then engage with the system and provide feedback on the quality of its answers. The feedback contains both structured ratings and unstructured natural language explanations. We train a neural model with this feedback data that can generate explanations and re-score answer candidates. We show that feedback data not only improves the accuracy of the deployed QA system but also other stronger non-deployed systems. The generated explanations also help users make informed decisions about the correctness of answers.

2020

pdf bib
MeDAL: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining
Zhi Wen | Xing Han Lu | Siva Reddy
Proceedings of the 3rd Clinical Natural Language Processing Workshop

One of the biggest challenges that prohibit the use of many current NLP methods in clinical settings is the availability of public datasets. In this work, we present MeDAL, a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. We pre-trained several models of common architectures on this dataset and empirically showed that such pre-training leads to improved performance and convergence speed when fine-tuning on downstream medical tasks.