Xingdi Yuan


pdf bib
Interactive Machine Comprehension with Dynamic Knowledge Graphs
Xingdi Yuan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Interactive machine reading comprehension (iMRC) is machine comprehension tasks where knowledge sources are partially observable. An agent must interact with an environment sequentially to gather necessary knowledge in order to answer a question. We hypothesize that graph representations are good inductive biases, which can serve as an agent’s memory mechanism in iMRC tasks. We explore four different categories of graphs that can capture text information at various levels. We describe methods that dynamically build and update these graphs during information gathering, as well as neural models to encode graph representations in RL agents. Extensive experiments on iSQuAD suggest that graph representations can result in significant performance improvements for RL agents.

pdf bib
An Empirical Study on Neural Keyphrase Generation
Rui Meng | Xingdi Yuan | Tong Wang | Sanqiang Zhao | Adam Trischler | Daqing He
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent years have seen a flourishing of neural keyphrase generation (KPG) works, including the release of several large-scale datasets and a host of new models to tackle them. Model performance on KPG tasks has increased significantly with evolving deep learning research. However, there lacks a comprehensive comparison among different model designs, and a thorough investigation on related factors that may affect a KPG system’s generalization performance. In this empirical study, we aim to fill this gap by providing extensive experimental results and analyzing the most crucial factors impacting the generalizability of KPG models. We hope this study can help clarify some of the uncertainties surrounding the KPG task and facilitate future research on this topic.

pdf bib
Bringing Structure into Summaries: a Faceted Summarization Dataset for Long Scientific Documents
Rui Meng | Khushboo Thaker | Lei Zhang | Yue Dong | Xingdi Yuan | Tong Wang | Daqing He
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Faceted summarization provides briefings of a document from different perspectives. Readers can quickly comprehend the main points of a long document with the help of a structured outline. However, little research has been conducted on this subject, partially due to the lack of large-scale faceted summarization datasets. In this study, we present FacetSum, a faceted summarization benchmark built on Emerald journal articles, covering a diverse range of domains. Different from traditional document-summary pairs, FacetSum provides multiple summaries, each targeted at specific sections of a long document, including the purpose, method, findings, and value. Analyses and empirical results on our dataset reveal the importance of bringing structure into summaries. We believe FacetSum will spur further advances in summarization research and foster the development of NLP systems that can leverage the structured information in both long texts and summaries.


pdf bib
Interactive Machine Comprehension with Information Seeking Agents
Xingdi Yuan | Jie Fu | Marc-Alexandre Côté | Yi Tay | Chris Pal | Adam Trischler
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Existing machine reading comprehension (MRC) models do not scale effectively to real-world applications like web-level information retrieval and question answering (QA). We argue that this stems from the nature of MRC datasets: most of these are static environments wherein the supporting documents and all necessary information are fully observed. In this paper, we propose a simple method that reframes existing MRC datasets as interactive, partially observable environments. Specifically, we “occlude” the majority of a document’s text and add context-sensitive commands that reveal “glimpses” of the hidden text to a model. We repurpose SQuAD and NewsQA as an initial case study, and then show how the interactive corpora can be used to train a model that seeks relevant information through sequential decision making. We believe that this setting can contribute in scaling models to web-level QA scenarios.

pdf bib
One Size Does Not Fit All: Generating and Evaluating Variable Number of Keyphrases
Xingdi Yuan | Tong Wang | Rui Meng | Khushboo Thaker | Peter Brusilovsky | Daqing He | Adam Trischler
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Different texts shall by nature correspond to different number of keyphrases. This desideratum is largely missing from existing neural keyphrase generation models. In this study, we address this problem from both modeling and evaluation perspectives. We first propose a recurrent generative model that generates multiple keyphrases as delimiter-separated sequences. Generation diversity is further enhanced with two novel techniques by manipulating decoder hidden states. In contrast to previous approaches, our model is capable of generating diverse keyphrases and controlling number of outputs. We further propose two evaluation metrics tailored towards the variable-number generation. We also introduce a new dataset StackEx that expands beyond the only existing genre (i.e., academic writing) in keyphrase generation tasks. With both previous and new evaluation metrics, our model outperforms strong baselines on all datasets.


pdf bib
Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives
Yi Tay | Shuohang Wang | Anh Tuan Luu | Jie Fu | Minh C. Phan | Xingdi Yuan | Jinfeng Rao | Siu Cheung Hui | Aston Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51% relative improvement on BLEU-4 and 17% relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.

pdf bib
Interactive Language Learning by Question Answering
Xingdi Yuan | Marc-Alexandre Côté | Jie Fu | Zhouhan Lin | Chris Pal | Yoshua Bengio | Adam Trischler
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Humans observe and interact with the world to acquire knowledge. However, most existing machine reading comprehension (MRC) tasks miss the interactive, information-seeking component of comprehension. Such tasks present models with static documents that contain all necessary information, usually concentrated in a single short substring. Thus, models can achieve strong performance through simple word- and phrase-based pattern matching. We address this problem by formulating a novel text-based question answering task: Question Answering with Interactive Text (QAit). In QAit, an agent must interact with a partially observable text-based environment to gather information required to answer questions. QAit poses questions about the existence, location, and attributes of objects found in the environment. The data is built using a text-based game generator that defines the underlying dynamics of interaction with the environment. We propose and evaluate a set of baseline models for the QAit task that includes deep reinforcement learning agents. Experiments show that the task presents a major challenge for machine reading systems, while humans solve it with relative ease.


pdf bib
Neural Models for Key Phrase Extraction and Question Generation
Sandeep Subramanian | Tong Wang | Xingdi Yuan | Saizheng Zhang | Adam Trischler | Yoshua Bengio
Proceedings of the Workshop on Machine Reading for Question Answering

We propose a two-stage neural model to tackle question generation from documents. First, our model estimates the probability that word sequences in a document are ones that a human would pick when selecting candidate answers by training a neural key-phrase extractor on the answers in a question-answering corpus. Predicted key phrases then act as target answers and condition a sequence-to-sequence question-generation model with a copy mechanism. Empirically, our key-phrase extraction model significantly outperforms an entity-tagging baseline and existing rule-based approaches. We further demonstrate that our question generation system formulates fluent, answerable questions from key phrases. This two-stage system could be used to augment or generate reading comprehension datasets, which may be leveraged to improve machine reading systems or in educational settings.


pdf bib
Machine Comprehension by Text-to-Text Neural Question Generation
Xingdi Yuan | Tong Wang | Caglar Gulcehre | Alessandro Sordoni | Philip Bachman | Saizheng Zhang | Sandeep Subramanian | Adam Trischler
Proceedings of the 2nd Workshop on Representation Learning for NLP

We propose a recurrent neural model that generates natural-language questions from documents, conditioned on answers. We show how to train the model using a combination of supervised and reinforcement learning. After teacher forcing for standard maximum likelihood training, we fine-tune the model using policy gradient techniques to maximize several rewards that measure question quality. Most notably, one of these rewards is the performance of a question-answering system. We motivate question generation as a means to improve the performance of question answering systems. Our model is trained and evaluated on the recent question-answering dataset SQuAD.

pdf bib
NewsQA: A Machine Comprehension Dataset
Adam Trischler | Tong Wang | Xingdi Yuan | Justin Harris | Alessandro Sordoni | Philip Bachman | Kaheer Suleman
Proceedings of the 2nd Workshop on Representation Learning for NLP

We present NewsQA, a challenging machine comprehension dataset of over 100,000 human-generated question-answer pairs. Crowdworkers supply questions and answers based on a set of over 10,000 news articles from CNN, with answers consisting of spans of text in the articles. We collect this dataset through a four-stage process designed to solicit exploratory questions that require reasoning. Analysis confirms that NewsQA demands abilities beyond simple word matching and recognizing textual entailment. We measure human performance on the dataset and compare it to several strong neural models. The performance gap between humans and machines (13.3% F1) indicates that significant progress can be made on NewsQA through future research. The dataset is freely available online.


pdf bib
A Parallel-Hierarchical Model for Machine Comprehension on Sparse Data
Adam Trischler | Zheng Ye | Xingdi Yuan | Jing He | Philip Bachman
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Natural Language Comprehension with the EpiReader
Adam Trischler | Zheng Ye | Xingdi Yuan | Philip Bachman | Alessandro Sordoni | Kaheer Suleman
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing