Xingmeng Zhao


2024

pdf bib
UTSA-NLP at ChemoTimelines 2024: Evaluating Instruction-Tuned Language Models for Temporal Relation Extraction
Xingmeng Zhao | Anthony Rios
Proceedings of the 6th Clinical Natural Language Processing Workshop

This paper presents our approach for the 2024 ChemoTimelines shared task. Specifically, we explored using Large Language Models (LLMs) for temporal relation extraction. We evaluate multiple model variations based on how the training data is used. For instance, we transform the task into a question-answering problem and use QA pairs to extract chemo-related events and their temporal relations. Next, we add all the documents to each question-answer pair as examples in our training dataset. Finally, we explore adding unlabeled data for continued pretraining. Each addition is done iteratively. Our results show that adding the document helps, but unlabeled data does not yield performance improvements, possibly because we used only 1% of the available data. Moreover, we find that instruction-tuned models still substantially underperform more traditional systems (e.g., EntityBERT).

pdf bib
A Comprehensive Study of Gender Bias in Chemical Named Entity Recognition Models
Xingmeng Zhao | Ali Niazi | Anthony Rios
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Chemical named entity recognition (NER) models are used in many downstream tasks, from adverse drug reaction identification to pharmacoepidemiology. However, it is unknown whether these models work the same for everyone. Performance disparities can potentially cause harm rather than the intended good. This paper assesses gender-related performance disparities in chemical NER systems. We develop a framework for measuring gender bias in chemical NER models using synthetic data and a newly annotated corpus of over 92,405 words with self-identified gender information from Reddit. Our evaluation of multiple biomedical NER models reveals evident biases. For instance, synthetic data suggests that female names are frequently misclassified as chemicals, especially when it comes to brand name mentions. Additionally, we observe performance disparities between female- and male-associated data in both datasets. Many systems fail to detect contraceptives such as birth control. Our findings emphasize the biases in chemical NER models, urging practitioners to account for these biases in downstream applications.

2023

pdf bib
UTSA-NLP at RadSum23: Multi-modal Retrieval-Based Chest X-Ray Report Summarization
Tongnian Wang | Xingmeng Zhao | Anthony Rios
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

Radiology report summarization aims to automatically provide concise summaries of radiology findings, reducing time and errors in manual summaries. However, current methods solely summarize the text, which overlooks critical details in the images. Unfortunately, directly using the images in a multimodal model is difficult. Multimodal models are susceptible to overfitting due to their increased capacity, and modalities tend to overfit and generalize at different rates. Thus, we propose a novel retrieval-based approach that uses image similarities to generate additional text features. We further employ few-shot with chain-of-thought and ensemble techniques to boost performance. Overall, our method achieves state-of-the-art performance in the F1RadGraph score, which measures the factual correctness of summaries. We rank second place in both MIMIC-CXR and MIMIC-III hidden tests among 11 teams.

pdf bib
BabyStories: Can Reinforcement Learning Teach Baby Language Models to Write Better Stories?
Xingmeng Zhao | Tongnian Wang | Sheri Osborn | Anthony Rios
Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning

2022

pdf bib
UTSA NLP at SemEval-2022 Task 4: An Exploration of Simple Ensembles of Transformers, Convolutional, and Recurrent Neural Networks
Xingmeng Zhao | Anthony Rios
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

The act of appearing kind or helpful via the use of but having a feeling of superiority condescending and patronizing language can have have serious mental health implications to those that experience it. Thus, detecting this condescending and patronizing language online can be useful for online moderation systems. Thus, in this manuscript, we describe the system developed by Team UTSA SemEval-2022 Task 4, Detecting Patronizing and Condescending Language. Our approach explores the use of several deep learning architectures including RoBERTa, convolutions neural networks, and Bidirectional Long Short-Term Memory Networks. Furthermore, we explore simple and effective methods to create ensembles of neural network models. Overall, we experimented with several ensemble models and found that the a simple combination of five RoBERTa models achieved an F-score of .6441 on the development dataset and .5745 on the final test dataset. Finally, we also performed a comprehensive error analysis to better understand the limitations of the model and provide ideas for further research.