Xingyao Zhang


2024

pdf bib
MedAgents: Large Language Models as Collaborators for Zero-shot Medical Reasoning
Xiangru Tang | Anni Zou | Zhuosheng Zhang | Ziming Li | Yilun Zhao | Xingyao Zhang | Arman Cohan | Mark Gerstein
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs), despite their remarkable progress across various general domains, encounter significant barriers in medicine and healthcare. This field faces unique challenges such as domain-specific terminologies and reasoning over specialized knowledge. To address these issues, we propose MedAgents, a novel multi-disciplinary collaboration framework for the medical domain. MedAgents leverages LLM-based agents in a role-playing setting that participate in a collaborative multi-round discussion, thereby enhancing LLM proficiency and reasoning capabilities. This training-free framework encompasses five critical steps: gathering domain experts, proposing individual analyses, summarising these analyses into a report, iterating over discussions until a consensus is reached, and ultimately making a decision. Our work focuses on the zero-shot setting, which is applicable in real-world scenarios. Experimental results on nine datasets (MedQA, MedMCQA, PubMedQA, and six subtasks from MMLU) establish that our proposed MedAgents framework excels at mining and harnessing the medical expertise within LLMs, as well as extending its reasoning abilities. Our code can be found at https://github.com/gersteinlab/MedAgents.

2023

pdf bib
Instructed Language Models with Retrievers Are Powerful Entity Linkers
Zilin Xiao | Ming Gong | Jie Wu | Xingyao Zhang | Linjun Shou | Daxin Jiang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Generative approaches powered by large language models (LLMs) have demonstrated emergent abilities in tasks that require complex reasoning abilities. Yet the generative nature still makes the generated content suffer from hallucinations, thus unsuitable for entity-centric tasks like entity linking (EL) requiring precise entity predictions over a large knowledge base. We present Instructed Generative Entity Linker (INSGENEL), the first approach that enables casual language models to perform entity linking over knowledge bases. Several methods of equipping language models with EL ability were proposed in this work, including (i) a sequence-to-sequence training EL objective with instruction-tuning, (ii) a novel generative EL framework based on a light-weight potential mention retriever that frees the model from heavy and non-parallelizable decoding, achieving 4× speedup without compromise on linking metrics. INSGENEL outperforms previous generative alternatives with +6.8 F1 points gain on average, also with a huge advantage in training data efficiency and training compute consumption. In addition, our skillfully-engineered in-context learning (ICL) framework for EL still lags behind INSGENEL significantly, reaffirming that the EL task remains a persistent hurdle for general LLMs.

pdf bib
Coherent Entity Disambiguation via Modeling Topic and Categorical Dependency
Zilin Xiao | Linjun Shou | Xingyao Zhang | Jie Wu | Ming Gong | Daxin Jiang
Findings of the Association for Computational Linguistics: EMNLP 2023

Previous entity disambiguation (ED) methods adopt a discriminative paradigm, where prediction is made based on matching scores between mention context and candidate entities using length-limited encoders. However, these methods often struggle to capture explicit discourse-level dependencies, resulting in incoherent predictions at the abstract level (e.g. topic or category). We propose CoherentED, an ED system equipped with novel designs aimed at enhancing the coherence of entity predictions. Our method first introduces an unsupervised variational autoencoder (VAE) to extract latent topic vectors of context sentences. This approach not only allows the encoder to handle longer documents more effectively, conserves valuable input space, but also keeps a topic-level coherence. Additionally, we incorporate an external category memory, enabling the system to retrieve relevant categories for undecided mentions. By employing step-by-step entity decisions, this design facilitates the modeling of entity-entity interactions, thereby maintaining maximum coherence at the category level. We achieve new state-of-the-art results on popular ED benchmarks, with an average improvement of 1.3 F1 points. Our model demonstrates particularly outstanding performance on challenging long-text scenarios.

2020

pdf bib
A Graph Representation of Semi-structured Data for Web Question Answering
Xingyao Zhang | Linjun Shou | Jian Pei | Ming Gong | Lijie Wen | Daxin Jiang
Proceedings of the 28th International Conference on Computational Linguistics

The abundant semi-structured data on the Web, such as HTML-based tables and lists, provide commercial search engines a rich information source for question answering (QA). Different from plain text passages in Web documents, Web tables and lists have inherent structures, which carry semantic correlations among various elements in tables and lists. Many existing studies treat tables and lists as flat documents with pieces of text and do not make good use of semantic information hidden in structures. In this paper, we propose a novel graph representation of Web tables and lists based on a systematic categorization of the components in semi-structured data as well as their relations. We also develop pre-training and reasoning techniques on the graph model for the QA task. Extensive experiments on several real datasets collected from a commercial engine verify the effectiveness of our approach. Our method improves F1 score by 3.90 points over the state-of-the-art baselines.