Xingyu Chen


2023

pdf bib
Rethinking Word-Level Auto-Completion in Computer-Aided Translation
Xingyu Chen | Lemao Liu | Guoping Huang | Zhirui Zhang | Mingming Yang | Shuming Shi | Rui Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Word-level auto-completion (WLAC) plays a crucial role in Computer-Assisted Translation. While previous studies have primarily focused on designing complex model architectures, this paper takes a different perspective by rethinking the fundamental question: what kind of words are good auto-completions? We introduce a measurable criterion to address this question and discover that existing WLAC models often fail to meet this criterion. Building upon this observation, we propose an effective approach to enhance WLAC performance by promoting adherence to the criterion. Notably, the proposed approach is general and can be applied to various encoder-based architectures. Through extensive experiments, we demonstrate that our approach outperforms the top-performing system submitted to the WLAC shared tasks in WMT2022, while utilizing significantly smaller model sizes.

pdf bib
SJTU-MTLAB’s Submission to the WMT23 Word-Level Auto Completion Task
Xingyu Chen | Rui Wang
Proceedings of the Eighth Conference on Machine Translation

Word-level auto-completion (WLAC) plays a crucial role in Computer-Assisted Translation. In this paper, we describe the SJTU-MTLAB’s submission to the WMT23 WLAC task. We propose a joint method to incorporate the machine translation task to the WLAC task. The proposed approach is general and can be applied to various encoder-based architectures. Through extensive experiments, we demonstrate that our approach can greatly improve performance, while maintaining significantly small model sizes.

2022

pdf bib
META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI
Liangtai Sun | Xingyu Chen | Lu Chen | Tianle Dai | Zichen Zhu | Kai Yu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Task-oriented dialogue (TOD) systems have been widely used by mobile phone intelligent assistants to accomplish tasks such as calendar scheduling or hotel reservation. Current TOD systems usually focus on multi-turn text/speech interaction, then they would call back-end APIs designed for TODs to perform the task. However, this API-based architecture greatly limits the information-searching capability of intelligent assistants and may even lead to task failure if TOD-specific APIs are not available or the task is too complicated to be executed by the provided APIs. In this paper, we propose a new TOD architecture: GUI-based task-oriented dialogue system (GUI-TOD). A GUI-TOD system can directly perform GUI operations on real APPs and execute tasks without invoking TOD-specific backend APIs. Furthermore, we release META-GUI, a dataset for training a Multi-modal convErsaTional Agent on mobile GUI. We also propose a multi-model action prediction and response model, which show promising results on META-GUI. The dataset, codes and leaderboard are publicly available.

pdf bib
The AISP-SJTU Simultaneous Translation System for IWSLT 2022
Qinpei Zhu | Renshou Wu | Guangfeng Liu | Xinyu Zhu | Xingyu Chen | Yang Zhou | Qingliang Miao | Rui Wang | Kai Yu
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper describes AISP-SJTU’s submissions for the IWSLT 2022 Simultaneous Translation task. We participate in the text-to-text and speech-to-text simultaneous translation from English to Mandarin Chinese. The training of the CAAT is improved by training across multiple values of right context window size, which achieves good online performance without setting a prior right context window size for training. For speech-to-text task, the best model we submitted achieves 25.87, 26.21, 26.45 BLEU in low, medium and high regimes on tst-COMMON, corresponding to 27.94, 28.31, 28.43 BLEU in text-to-text task.

pdf bib
TIE: Topological Information Enhanced Structural Reading Comprehension on Web Pages
Zihan Zhao | Lu Chen | Ruisheng Cao | Hongshen Xu | Xingyu Chen | Kai Yu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recently, the structural reading comprehension (SRC) task on web pages has attracted increasing research interests. Although previous SRC work has leveraged extra information such as HTML tags or XPaths, the informative topology of web pages is not effectively exploited. In this work, we propose a Topological Information Enhanced model (TIE), which transforms the token-level task into a tag-level task by introducing a two-stage process (i.e. node locating and answer refining). Based on that, TIE integrates Graph Attention Network (GAT) and Pre-trained Language Model (PLM) to leverage the topological information of both logical structures and spatial structures. Experimental results demonstrate that our model outperforms strong baselines and achieves state-of-the-art performances on the web-based SRC benchmark WebSRC at the time of writing. The code of TIE will be publicly available at https://github.com/X-LANCE/TIE.

pdf bib
The AISP-SJTU Translation System for WMT 2022
Guangfeng Liu | Qinpei Zhu | Xingyu Chen | Renjie Feng | Jianxin Ren | Renshou Wu | Qingliang Miao | Rui Wang | Kai Yu
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper describes AISP-SJTU’s participation in WMT 2022 shared general MT task. In this shared task, we participated in four translation directions: English-Chinese, Chinese-English, English-Japanese and Japanese-English. Our systems are based on the Transformer architecture with several novel and effective variants, including network depth and internal structure. In our experiments, we employ data filtering, large-scale back-translation, knowledge distillation, forward-translation, iterative in-domain knowledge finetune and model ensemble. The constrained systems achieve 48.8, 29.7, 39.3 and 22.0 case-sensitive BLEU scores on EN-ZH, ZH-EN, EN-JA and JA-EN, respectively.

2021

pdf bib
WebSRC: A Dataset for Web-Based Structural Reading Comprehension
Xingyu Chen | Zihan Zhao | Lu Chen | JiaBao Ji | Danyang Zhang | Ao Luo | Yuxuan Xiong | Kai Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Web search is an essential way for humans to obtain information, but it’s still a great challenge for machines to understand the contents of web pages. In this paper, we introduce the task of web-based structural reading comprehension. Given a web page and a question about it, the task is to find an answer from the web page. This task requires a system not only to understand the semantics of texts but also the structure of the web page. Moreover, we proposed WebSRC, a novel Web-based Structural Reading Comprehension dataset. WebSRC consists of 400K question-answer pairs, which are collected from 6.4K web pages with corresponding HTML source code, screenshots, and metadata. Each question in WebSRC requires a certain structural understanding of a web page to answer, and the answer is either a text span on the web page or yes/no. We evaluate various strong baselines on our dataset to show the difficulty of our task. We also investigate the usefulness of structural information and visual features. Our dataset and baselines have been publicly available.