Xinjiang Lu


pdf bib
A Table-to-Text Framework with Heterogeneous Multidominance Attention and Self-Evaluated Multi-Pass Deliberation
Xi Chen | Xinjiang Lu | Haoran Xin | Wenjun Peng | Haoyang Duan | Feihu Jiang | Jingbo Zhou | Hui Xiong
Findings of the Association for Computational Linguistics: EMNLP 2023

Though big progress in table-to-text works, effectively leveraging table structure signals, e.g., hierarchical structure, remains challenging. Besides, deliberating generated descriptions proves to be effective for table-to-text. However, determining the appropriate outcome when encountering multi-pass candidates is another challenge. To this end, we propose a novel table-to-text approach on top of Self-evaluated multi-pass Generation and Heterogenous Multidominance Attention, namely SG-HMA. Specifically, we formulate the table structure into a multidominance (MD) structure and devise a heterogenous multidominance attention (HMA) to comprehensively explore the complex interactions encoded in the hierarchical structure, which can further deliver rich signals for text generation with the help of pre-trained language models (PLMs). Afterward, a contrastive loss is introduced to align the generation objective with evaluation metrics, so the more faithful generated descriptions can be guaranteed. We conduct extensive experiments on three public datasets, demonstrating that SG-HMA outperforms several SOTA methods quantitatively and qualitatively.


pdf bib
Towards Table-to-Text Generation with Pretrained Language Model: A Table Structure Understanding and Text Deliberating Approach
Miao Chen | Xinjiang Lu | Tong Xu | Yanyan Li | Zhou Jingbo | Dejing Dou | Hui Xiong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Although remarkable progress on the neural table-to-text methods has been made, the generalization issues hinder the applicability of these models due to the limited source tables. Large-scale pretrained language models sound like a promising solution to tackle such issues. However, how to effectively bridge the gap between the structured table and the text input by fully leveraging table information to fuel the pretrained model is still not well explored. Besides, another challenge of integrating the deliberation mechanism into the text-to-text pretrained model for solving the table-to-text task remains seldom studied. In this paper, to implement the table-to-text generation with pretrained language model, we propose a table structure understanding and text deliberating approach, namely TASD. To be specific, we devise a three-layered multi-head attention network to realize the table-structureaware text generation model with the help of the pretrained language model. Furthermore, a multi-pass decoder framework is adopted to enhance the capability of polishing generated text for table descriptions. The empirical studies, as well as human evaluation, on two public datasets, validate that our approach can generate faithful and fluent descriptive texts for different types of tables.