Xinyu Li


pdf bib
The CRECIL Corpus: a New Dataset for Extraction of Relations between Characters in Chinese Multi-party Dialogues
Yuru Jiang | Yang Xu | Yuhang Zhan | Weikai He | Yilin Wang | Zixuan Xi | Meiyun Wang | Xinyu Li | Yu Li | Yanchao Yu
Proceedings of the Thirteenth Language Resources and Evaluation Conference

We describe a new freely available Chinese multi-party dialogue dataset for automatic extraction of dialogue-based character relationships. The data has been extracted from the original TV scripts of a Chinese sitcom called “I Love My Home” with complex family-based human daily spoken conversations in Chinese. First, we introduced human annotation scheme for both global Character relationship map and character reference relationship. And then we generated the dialogue-based character relationship triples. The corpus annotates relationships between 140 entities in total. We also carried out a data exploration experiment by deploying a BERT-based model to extract character relationships on the CRECIL corpus and another existing relation extraction corpus (DialogRE (CITATION)).The results demonstrate that extracting character relationships is more challenging in CRECIL than in DialogRE.

pdf bib
Do Deep Neural Nets Display Human-like Attention in Short Answer Scoring?
Zijie Zeng | Xinyu Li | Dragan Gasevic | Guanliang Chen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Deep Learning (DL) techniques have been increasingly adopted for Automatic Text Scoring in education. However, these techniques often suffer from their inabilities to explain and justify how a prediction is made, which, unavoidably, decreases their trustworthiness and hinders educators from embracing them in practice. This study aimed to investigate whether (and to what extent) DL-based graders align with human graders regarding the important words they identify when marking short answer questions. To this end, we first conducted a user study to ask human graders to manually annotate important words in assessing answer quality and then measured the overlap between these human-annotated words and those identified by DL-based graders (i.e., those receiving large attention weights). Furthermore, we ran a randomized controlled experiment to explore the impact of highlighting important words detected by DL-based graders on human grading. The results showed that: (i) DL-based graders, to a certain degree, displayed alignment with human graders no matter whether DL-based graders and human graders agreed on the quality of an answer; and (ii) it is possible to facilitate human grading by highlighting those DL-detected important words, though further investigations are necessary to understand how human graders exploit such highlighted words.


pdf bib
Multimodal Affective Analysis Using Hierarchical Attention Strategy with Word-Level Alignment
Yue Gu | Kangning Yang | Shiyu Fu | Shuhong Chen | Xinyu Li | Ivan Marsic
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal affective computing, learning to recognize and interpret human affect and subjective information from multiple data sources, is still a challenge because: (i) it is hard to extract informative features to represent human affects from heterogeneous inputs; (ii) current fusion strategies only fuse different modalities at abstract levels, ignoring time-dependent interactions between modalities. Addressing such issues, we introduce a hierarchical multimodal architecture with attention and word-level fusion to classify utterance-level sentiment and emotion from text and audio data. Our introduced model outperforms state-of-the-art approaches on published datasets, and we demonstrate that our model is able to visualize and interpret synchronized attention over modalities.

pdf bib
Hybrid Attention based Multimodal Network for Spoken Language Classification
Yue Gu | Kangning Yang | Shiyu Fu | Shuhong Chen | Xinyu Li | Ivan Marsic
Proceedings of the 27th International Conference on Computational Linguistics

We examine the utility of linguistic content and vocal characteristics for multimodal deep learning in human spoken language understanding. We present a deep multimodal network with both feature attention and modality attention to classify utterance-level speech data. The proposed hybrid attention architecture helps the system focus on learning informative representations for both modality-specific feature extraction and model fusion. The experimental results show that our system achieves state-of-the-art or competitive results on three published multimodal datasets. We also demonstrated the effectiveness and generalization of our system on a medical speech dataset from an actual trauma scenario. Furthermore, we provided a detailed comparison and analysis of traditional approaches and deep learning methods on both feature extraction and fusion.