Xinyu Zhu


2024

pdf bib
ToolBeHonest: A Multi-level Hallucination Diagnostic Benchmark for Tool-Augmented Large Language Models
Yuxiang Zhang | Jing Chen | Junjie Wang | Yaxin Liu | Cheng Yang | Chufan Shi | Xinyu Zhu | Zihao Lin | Hanwen Wan | Yujiu Yang | Tetsuya Sakai | Tian Feng | Hayato Yamana
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Tool-augmented large language models (LLMs) are rapidly being integrated into real-world applications. Due to the lack of benchmarks, the community has yet to fully understand the hallucination issues within these models. To address this challenge, we introduce a comprehensive diagnostic benchmark, ToolBH. Specifically, we assess the LLM’s hallucinations through two perspectives: depth and breadth. In terms of depth, we propose a multi-level diagnostic process, including (1) solvability detection, (2) solution planning, and (3) missing-tool analysis. For breadth, we consider three scenarios based on the characteristics of the toolset: missing necessary tools, potential tools, and limited functionality tools. Furthermore, we developed seven tasks and collected 700 evaluation samples through multiple rounds of manual annotation. The results show the significant challenges presented by the ToolBH benchmark. The current advanced models Gemini-1.5-Pro and GPT-4o only achieve total scores of 45.3 and 37.0, respectively, on a scale of 100. In this benchmark, larger model parameters do not guarantee better performance; the training data and response strategies also play crucial roles in tool-enhanced LLM scenarios. Our diagnostic analysis indicates that the primary reason for model errors lies in assessing task solvability. Additionally, open-weight models suffer from performance drops with verbose replies, whereas proprietary models excel with longer reasoning.

pdf bib
HoLLMwood: Unleashing the Creativity of Large Language Models in Screenwriting via Role Playing
Jing Chen | Xinyu Zhu | Cheng Yang | Chufan Shi | Yadong Xi | Yuxiang Zhang | Junjie Wang | Jiashu Pu | Tian Feng | Yujiu Yang | Rongsheng Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Generative AI has demonstrated unprecedented creativity in the field of computer vision, yet such phenomena have not been observed in natural language processing. In particular, large language models (LLMs) can hardly produce written works at the level of human experts due to the extremely high complexity of literature writing. In this paper, we present HoLLMwood, an automated framework for unleashing the creativity of LLMs and exploring their potential in screenwriting, which is a highly demanding task. Mimicking the human creative process, we assign LLMs to different roles involved in the real-world scenario. In addition to the common practice of treating LLMs as Writer, we also apply LLMs as Editor, who is responsible for providing feedback and revision advice to Writer. Besides, to enrich the characters and deepen the plots, we introduce a role-playing mechanism and adopt LLMs as Actors that can communicate and interact with each other. Evaluations on automatically generated screenplays show that HoLLMwood substantially outperforms strong baselines in terms of coherence, relevance, interestingness and overall quality.

2023

pdf bib
Solving Math Word Problems via Cooperative Reasoning induced Language Models
Xinyu Zhu | Junjie Wang | Lin Zhang | Yuxiang Zhang | Yongfeng Huang | Ruyi Gan | Jiaxing Zhang | Yujiu Yang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large-scale pre-trained language models (PLMs) bring new opportunities to challenging problems, especially those that need high-level intelligence, such as the math word problem (MWPs). However, directly applying existing PLMs to MWPs can fail as the generation process lacks sufficient supervision and thus lacks fast adaptivity as humans. We notice that human reasoning has a dual reasoning framework that consists of an immediate reaction system (system 1) and a delicate reasoning system (system 2), where the entire reasoning is determined by their interaction. This inspires us to develop a cooperative reasoning-induced PLM for solving MWPs, called Cooperative Reasoning (CoRe), resulting in a human-like reasoning architecture with system 1 as the generator and system 2 as the verifier. In our approach, the generator is responsible for generating reasoning paths, and the verifiers are used to supervise the evaluation in order to obtain reliable feedback for the generator. We evaluate our CoRe framework on several mathematical reasoning datasets and achieve decent improvement over state-of-the-art methods, up to 9.6% increase over best baselines.

pdf bib
AutoConv: Automatically Generating Information-seeking Conversations with Large Language Models
Siheng Li | Cheng Yang | Yichun Yin | Xinyu Zhu | Zesen Cheng | Lifeng Shang | Xin Jiang | Qun Liu | Yujiu Yang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Information-seeking conversation, which aims to help users gather information through conversation, has achieved great progress in recent years. However, the research is still stymied by the scarcity of training data. To alleviate this problem, we propose AutoConv for synthetic conversation generation, which takes advantage of the few-shot learning ability and generation capacity of large language models (LLM). Specifically, we formulate the conversation generation problem as a language modeling task, then finetune an LLM with a few human conversations to capture the characteristics of the information-seeking process and use it for generating synthetic conversations with high quality. Experimental results on two frequently-used datasets verify that AutoConv has substantial improvements over strong baselines and alleviates the dependence on human annotation. In addition, we also provide several analysis studies to promote future research.

pdf bib
Question Answering as Programming for Solving Time-Sensitive Questions
Xinyu Zhu | Cheng Yang | Bei Chen | Siheng Li | Jian-Guang Lou | Yujiu Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Question answering plays a pivotal role in human daily life because it involves our acquisition of knowledge about the world. However, due to the dynamic and ever-changing nature of real-world facts, the answer can be completely different when the time constraint in the question changes. Recently, Large Language Models (LLMs) have shown remarkable intelligence in question answering, while our experiments reveal that the aforementioned problems still pose a significant challenge to existing LLMs. This can be attributed to the LLMs’ inability to perform rigorous reasoning based on surface-level text semantics. To overcome this limitation, rather than requiring LLMs to directly answer the question, we propose a novel approach where we reframe the Question Answering task as Programming (QAaP). Concretely, by leveraging modern LLMs’ superior capability in understanding both natural language and programming language, we endeavor to harness LLMs to represent diversely expressed text as well-structured code and select the best matching answer from multiple candidates through programming. We evaluate our QAaP framework on several time-sensitive question answering datasets and achieve decent improvement, up to 14.5% over strong baselines.

2022

pdf bib
Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective
Ping Yang | Junjie Wang | Ruyi Gan | Xinyu Zhu | Lin Zhang | Ziwei Wu | Xinyu Gao | Jiaxing Zhang | Tetsuya Sakai
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We propose a new paradigm for zero-shot learners that is format agnostic, i.e., it is compatible with any format and applicable to a list of language tasks, such as text classification, commonsense reasoning, coreference resolution, and sentiment analysis. Zero-shot learning aims to train a model on a given task such that it can address new learning tasks without any additional training. Our approach converts zero-shot learning into multiple-choice tasks, avoiding problems in commonly used large-scale generative models such as FLAN. It not only adds generalization ability to models but also significantly reduces the number of parameters. Our method shares the merits of efficient training and deployment. Our approach shows state-of-the-art performance on several benchmarks and produces satisfactory results on tasks such as natural language inference and text classification. Our model achieves this success with only 235M parameters, which is substantially smaller than state-of-the-art models with billions of parameters. The code and pre-trained models are available at https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen/examples/unimc .

pdf bib
The AISP-SJTU Simultaneous Translation System for IWSLT 2022
Qinpei Zhu | Renshou Wu | Guangfeng Liu | Xinyu Zhu | Xingyu Chen | Yang Zhou | Qingliang Miao | Rui Wang | Kai Yu
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper describes AISP-SJTU’s submissions for the IWSLT 2022 Simultaneous Translation task. We participate in the text-to-text and speech-to-text simultaneous translation from English to Mandarin Chinese. The training of the CAAT is improved by training across multiple values of right context window size, which achieves good online performance without setting a prior right context window size for training. For speech-to-text task, the best model we submitted achieves 25.87, 26.21, 26.45 BLEU in low, medium and high regimes on tst-COMMON, corresponding to 27.94, 28.31, 28.43 BLEU in text-to-text task.