Xisheng Xiao
2024
DMIN: A Discourse-specific Multi-granularity Integration Network for Conversational Aspect-based Sentiment Quadruple Analysis
Peijie Huang
|
Xisheng Xiao
|
Yuhong Xu
|
Jiawei Chen
Findings of the Association for Computational Linguistics: ACL 2024
Conversational Aspect-based Sentiment Quadruple Analysis (DiaASQ) aims to extract fine-grained sentiment quadruples from dialogues. Previous research has primarily concentrated on enhancing token-level interactions, still lacking in sufficient modeling of the discourse structure information in dialogue. Firstly, it does not incorporate interactions among different utterances in the encoding stage, resulting in a limited token-level context understanding for subsequent modules. Secondly, it ignores the critical fact that discourse information is naturally organized at the utterance level and learning it solely at the token level is incomplete. In this work, we strengthen the token-level encoder by utilizing a discourse structure called “thread” and graph convolutional networks to enhance the token interaction among different utterances. Moreover, we propose an utterance-level encoder to learn the structured speaker and reply information, providing a macro understanding of dialogue discourse. Furthermore, we introduce a novel Multi-granularities Integrator to integrate token-level and utterance-level representations, resulting in a comprehensive and cohesive dialogue contextual understanding. Experiments on two datasets demonstrate that our model achieves state-of-the-art performance. Our codes are publicly available at https://github.com/SIGSDSscau/DMIN.
Logits Reranking via Semantic Labels for Hard Samples in Text Classification
Peijie Huang
|
Junbao Huang
|
Yuhong Xu
|
Weizhen Li
|
Xisheng Xiao
Findings of the Association for Computational Linguistics: EMNLP 2024
Pre-trained Language Models (PLMs) have achieved significant success in text classification. However, they still face challenges with hard samples, which refer to instances where the model exhibits diminished confidence in distinguishing new samples. Existing research has addressed related issues, but often overlooks the semantic information inherent in the labels, treating them merely as one-hot vectors. In this paper, we propose Logits Reranking via Semantic Labels (LRSL), a model-agnostic post-processing method that leverages label semantics and auto detection of hard samples to improve classification accuracy. LRSL automatically identifies hard samples, which are then jointly processed by MLP-based and Similarity-based approaches. Applied only during inference, LRSL operates solely on classification logits, reranking them based on semantic similarities without interfering with the model’s training process. The experiments demonstrate the effectiveness of our method, showing significant improvements across different PLMs. Our codes are publicly available at https://github.com/SIGSDSscau/LRSL.
Search