Xiuyu Wu


2023

pdf bib
Are Pre-trained Language Models Useful for Model Ensemble in Chinese Grammatical Error Correction?
Chenming Tang | Xiuyu Wu | Yunfang Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Model ensemble has been in widespread use for Grammatical Error Correction (GEC), boosting model performance. We hypothesize that model ensemble based on the perplexity (PPL) computed by pre-trained language models (PLMs) should benefit the GEC system. To this end, we explore several ensemble strategies based on strong PLMs with four sophisticated single models. However, the performance does not improve but even gets worse after the PLM-based ensemble. This surprising result sets us doing a detailed analysis on the data and coming up with some insights on GEC. The human references of correct sentences is far from sufficient in the test data, and the gap between a correct sentence and an idiomatic one is worth our attention. Moreover, the PLM-based ensemble strategies provide an effective way to extend and improve GEC benchmark data. Our source code is available at https://github.com/JamyDon/PLM-based-CGEC-Model-Ensemble.

2022

pdf bib
Position Offset Label Prediction for Grammatical Error Correction
Xiuyu Wu | Jingsong Yu | Xu Sun | Yunfang Wu
Proceedings of the 29th International Conference on Computational Linguistics

We introduce a novel position offset label prediction subtask to the encoder-decoder architecture for grammatical error correction (GEC) task. To keep the meaning of the input sentence unchanged, only a few words should be inserted or deleted during correction, and most of tokens in the erroneous sentence appear in the paired correct sentence with limited position movement. Inspired by this observation, we design an auxiliary task to predict position offset label (POL) of tokens, which is naturally capable of integrating different correction editing operations into a unified framework. Based on the predicted POL, we further propose a new copy mechanism (P-copy) to replace the vanilla copy module. Experimental results on Chinese, English and Japanese datasets demonstrate that our proposed POL-Pc framework obviously improves the performance of baseline models. Moreover, our model yields consistent performance gain over various data augmentation methods. Especially, after incorporating synthetic data, our model achieves a 38.95 F-0.5 score on Chinese GEC dataset, which outperforms the previous state-of-the-art by a wide margin of 1.98 points.

pdf bib
From Spelling to Grammar: A New Framework for Chinese Grammatical Error Correction
Xiuyu Wu | Yunfang Wu
Findings of the Association for Computational Linguistics: EMNLP 2022

Chinese Grammatical Error Correction (CGEC) aims to generate a correct sentence from an erroneous sequence, where different kinds of errors are mixed. This paper divides the CGEC task into two steps, namely spelling error correction and grammatical error correction. We firstly propose a novel zero-shot approach for spelling error correction, which is simple but effective, obtaining a high precision to avoid error accumulation of the pipeline structure. To handle grammatical error correction, we design part-of-speech (POS) features and semantic class features to enhance the neural network model, and propose an auxiliary task to predict the POS sequence of the target sentence. Our proposed framework achieves a 42.11 F-0.5 score on CGEC dataset without using any synthetic data or data augmentation methods, which outperforms the previous state-of-the-art by a wide margin of 1.30 points. Moreover, our model produces meaningful POS representations that capture different POS words and convey reasonable POS transition rules.

pdf bib
An Error-Guided Correction Model for Chinese Spelling Error Correction
Rui Sun | Xiuyu Wu | Yunfang Wu
Findings of the Association for Computational Linguistics: EMNLP 2022

Although existing neural network approaches have achieved great progress on Chinese spelling correction, there is still room to improve. The model is required to avoid over-correction and to distinguish a correct token from its phonological and visual similar ones. In this paper, we propose an error-guided correction model to address these issues. By borrowing the powerful ability of the pre-trained BERT model, we propose a novel zero-shot error detection method to do a preliminary detection, which guides our model to attend more on the probably wrong tokens in encoding and to avoid modifying the correct tokens in generating. Furthermore, we introduce a new loss function to integrate the error confusion set, which enables our model to distinguish similar tokens. Moreover, our model supports highly parallel decoding to meet real applications. Experiments are conducted on widely used benchmarks. Our model achieves superior performance against state-of-the-art approaches by a remarkable margin, on both the quality and computation speed.

2020

pdf bib
A Question Type Driven and Copy Loss Enhanced Frameworkfor Answer-Agnostic Neural Question Generation
Xiuyu Wu | Nan Jiang | Yunfang Wu
Proceedings of the Fourth Workshop on Neural Generation and Translation

The answer-agnostic question generation is a significant and challenging task, which aims to automatically generate questions for a given sentence but without an answer. In this paper, we propose two new strategies to deal with this task: question type prediction and copy loss mechanism. The question type module is to predict the types of questions that should be asked, which allows our model to generate multiple types of questions for the same source sentence. The new copy loss enhances the original copy mechanism to make sure that every important word in the source sentence has been copied when generating questions. Our integrated model outperforms the state-of-the-art approach in answer-agnostic question generation, achieving a BLEU-4 score of 13.9 on SQuAD. Human evaluation further validates the high quality of our generated questions. We will make our code public available for further research.

2019

pdf bib
A Soft Label Strategy for Target-Level Sentiment Classification
Da Yin | Xiao Liu | Xiuyu Wu | Baobao Chang
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

In this paper, we propose a soft label approach to target-level sentiment classification task, in which a history-based soft labeling model is proposed to measure the possibility of a context word as an opinion word. We also apply a convolution layer to extract local active features, and introduce positional weights to take relative distance information into consideration. In addition, we obtain more informative target representation by training with context tokens together to make deeper interaction between target and context tokens. We conduct experiments on SemEval 2014 datasets and the experimental results show that our approach significantly outperforms previous models and gives state-of-the-art results on these datasets.