Xixin Wu


pdf bib
Grounded Dialogue Generation with Cross-encoding Re-ranker, Grounding Span Prediction, and Passage Dropout
Kun Li | Tianhua Zhang | Liping Tang | Junan Li | Hongyuan Lu | Xixin Wu | Helen Meng
Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering

MultiDoc2Dial presents an important challenge on modeling dialogues grounded with multiple documents. This paper proposes a pipeline system of “retrieve, re-rank, and generate”, where each component is individually optimized. This enables the passage re-ranker and response generator to fully exploit training with ground-truth data. Furthermore, we use a deep cross-encoder trained with localized hard negative passages from the retriever. For the response generator, we use grounding span prediction as an auxiliary task to be jointly trained with the main task of response generation. We also adopt a passage dropout and regularization technique to improve response generation performance. Experimental results indicate that the system clearly surpasses the competitive baseline and our team CPII-NLP ranked 1st among the public submissions on ALL four leaderboards based on the sum of F1, SacreBLEU, METEOR and RougeL scores.


pdf bib
Coupling Global and Local Context for Unsupervised Aspect Extraction
Ming Liao | Jing Li | Haisong Zhang | Lingzhi Wang | Xixin Wu | Kam-Fai Wong
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Aspect words, indicating opinion targets, are essential in expressing and understanding human opinions. To identify aspects, most previous efforts focus on using sequence tagging models trained on human-annotated data. This work studies unsupervised aspect extraction and explores how words appear in global context (on sentence level) and local context (conveyed by neighboring words). We propose a novel neural model, capable of coupling global and local representation to discover aspect words. Experimental results on two benchmarks, laptop and restaurant reviews, show that our model significantly outperforms the state-of-the-art models from previous studies evaluated with varying metrics. Analysis on model output show our ability to learn meaningful and coherent aspect representations. We further investigate how words distribute in global and local context, and find that aspect and non-aspect words do exhibit different context, interpreting our superiority in unsupervised aspect extraction.