Xiyan Fu


pdf bib
MM-AVS: A Full-Scale Dataset for Multi-modal Summarization
Xiyan Fu | Jun Wang | Zhenglu Yang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Multimodal summarization becomes increasingly significant as it is the basis for question answering, Web search, and many other downstream tasks. However, its learning materials have been lacking a holistic organization by integrating resources from various modalities, thereby lagging behind the research progress of this field. In this study, we release a full-scale multimodal dataset comprehensively gathering documents, summaries, images, captions, videos, audios, transcripts, and titles in English from CNN and Daily Mail. To our best knowledge, this is the first collection that spans all modalities and nearly comprises all types of materials available in this community. In addition, we devise a baseline model based on the novel dataset, which employs a newly proposed Jump-Attention mechanism based on transcripts. The experimental results validate the important assistance role of the external information for multimodal summarization.

pdf bib
Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter
Wei Liu | Xiyan Fu | Yue Zhang | Wenming Xiao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Lexicon information and pre-trained models, such as BERT, have been combined to explore Chinese sequence labeling tasks due to their respective strengths. However, existing methods solely fuse lexicon features via a shallow and random initialized sequence layer and do not integrate them into the bottom layers of BERT. In this paper, we propose Lexicon Enhanced BERT (LEBERT) for Chinese sequence labeling, which integrates external lexicon knowledge into BERT layers directly by a Lexicon Adapter layer. Compared with existing methods, our model facilitates deep lexicon knowledge fusion at the lower layers of BERT. Experiments on ten Chinese datasets of three tasks including Named Entity Recognition, Word Segmentation, and Part-of-Speech Tagging, show that LEBERT achieves state-of-the-art results.

pdf bib
RepSum: Unsupervised Dialogue Summarization based on Replacement Strategy
Xiyan Fu | Yating Zhang | Tianyi Wang | Xiaozhong Liu | Changlong Sun | Zhenglu Yang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In the field of dialogue summarization, due to the lack of training data, it is often difficult for supervised summary generation methods to learn vital information from dialogue context with limited data. Several attempts on unsupervised summarization for text by leveraging semantic information solely or auto-encoder strategy (i.e., sentence compression), it however cannot be adapted to the dialogue scene due to the limited words in utterances and huge gap between the dialogue and its summary. In this study, we propose a novel unsupervised strategy to address this challenge, which roots from the hypothetical foundation that a superior summary approximates a replacement of the original dialogue, and they are roughly equivalent for auxiliary (self-supervised) tasks, e.g., dialogue generation. The proposed strategy RepSum is applied to generate both extractive and abstractive summary with the guidance of the followed nˆth utterance generation and classification tasks. Extensive experiments on various datasets demonstrate the superiority of the proposed model compared with the state-of-the-art methods.