Xu Wang


pdf bib
DialogQAE: N-to-N Question Answer Pair Extraction from Customer Service Chatlog
Xin Zheng | Tianyu Liu | Haoran Meng | Xu Wang | Yufan Jiang | Mengliang Rao | Binghuai Lin | Yunbo Cao | Zhifang Sui
Findings of the Association for Computational Linguistics: EMNLP 2023

Harvesting question-answer (QA) pairs from customer service chatlog in the wild is an efficient way to enrich the knowledge base for customer service chatbots in the cold start or continuous integration scenarios. Prior work attempts to obtain 1-to-1 QA pairs from growing customer service chatlog, which fails to integrate the incomplete utterances from the dialog context for composite QA retrieval. In this paper, we propose N-to-N QA extraction task in which the derived questions and corresponding answers might be separated across different utterances. We introduce a suite of generative/discriminative tagging based methods with end-to-end and two-stage variants that perform well on 5 customer service datasets and for the first time setup a benchmark for N-to-N DialogQAE with utterance and session level evaluation metrics. With a deep dive into extracted QA pairs, we find that the relations between and inside the QA pairs can be indicators to analyze the dialogue structure, e.g. information seeking, clarification, barge-in and elaboration. We also show that the proposed models can adapt to different domains and languages, and reduce the labor cost of knowledge accumulation in the real-world product dialogue platform.


pdf bib
Adaptive Meta-learner via Gradient Similarity for Few-shot Text Classification
Tianyi Lei | Honghui Hu | Qiaoyang Luo | Dezhong Peng | Xu Wang
Proceedings of the 29th International Conference on Computational Linguistics

Few-shot text classification aims to classify the text under the few-shot scenario. Most of the previous methods adopt optimization-based meta learning to obtain task distribution. However, due to the neglect of matching between the few amount of samples and complicated models, as well as the distinction between useful and useless task features, these methods suffer from the overfitting issue. To address this issue, we propose a novel Adaptive Meta-learner via Gradient Similarity (AMGS) method to improve the model generalization ability to a new task. Specifically, the proposed AMGS alleviates the overfitting based on two aspects: (i) acquiring the potential semantic representation of samples and improving model generalization through the self-supervised auxiliary task in the inner loop, (ii) leveraging the adaptive meta-learner via gradient similarity to add constraints on the gradient obtained by base-learner in the outer loop. Moreover, we make a systematic analysis of the influence of regularization on the entire framework. Experimental results on several benchmarks demonstrate that the proposed AMGS consistently improves few-shot text classification performance compared with the state-of-the-art optimization-based meta-learning approaches. The code is available at: https://github.com/Tianyi-Lei.

pdf bib
DualNER: A Dual-Teaching framework for Zero-shot Cross-lingual Named Entity Recognition
Jiali Zeng | Yufan Jiang | Yongjing Yin | Xu Wang | Binghuai Lin | Yunbo Cao
Findings of the Association for Computational Linguistics: EMNLP 2022

We present DualNER, a simple and effective framework to make full use of both annotated source language corpus and unlabeled target language text for zero-shot cross-lingual named entity recognition (NER). In particular, we combine two complementary learning paradigms of NER, i.e., sequence labeling and span prediction, into a unified multi-task framework. After obtaining a sufficient NER model trained on the source data, we further train it on the target data in a dual-teaching manner, in which the pseudo-labels for one task are constructed from the prediction of the other task. Moreover, based on the span prediction, an entity-aware regularization is proposed to enhance the intrinsic cross-lingual alignment between the same entities in different languages. Experiments and analysis demonstrate the effectiveness of our DualNER.

pdf bib
Towards Process-Oriented, Modular, and Versatile Question Generation that Meets Educational Needs
Xu Wang | Simin Fan | Jessica Houghton | Lu Wang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

NLP-powered automatic question generation (QG) techniques carry great pedagogical potential of saving educators’ time and benefiting student learning. Yet, QG systems have not been widely adopted in classrooms to date. In this work, we aim to pinpoint key impediments and investigate how to improve the usability of automatic QG techniques for educational purposes by understanding how instructors construct questions and identifying touch points to enhance the underlying NLP models. We perform an in-depth need finding study with 11 instructors across 7 different universities, and summarize their thought processes and needs when creating questions. While instructors show great interests in using NLP systems to support question design, none of them has used such tools in practice. They resort to multiple sources of information, ranging from domain knowledge to students’ misconceptions, all of which missing from today’s QG systems. We argue that building effective human-NLP collaborative QG systems that emphasize instructor control and explainability is imperative for real-world adoption. We call for QG systems to provide process-oriented support, use modular design, and handle diverse sources of input.


pdf bib
FCM: A Fine-grained Comparison Model for Multi-turn Dialogue Reasoning
Xu Wang | Hainan Zhang | Shuai Zhao | Yanyan Zou | Hongshen Chen | Zhuoye Ding | Bo Cheng | Yanyan Lan
Findings of the Association for Computational Linguistics: EMNLP 2021

Despite the success of neural dialogue systems in achieving high performance on the leader-board, they cannot meet users’ requirements in practice, due to their poor reasoning skills. The underlying reason is that most neural dialogue models only capture the syntactic and semantic information, but fail to model the logical consistency between the dialogue history and the generated response. Recently, a new multi-turn dialogue reasoning task has been proposed, to facilitate dialogue reasoning research. However, this task is challenging, because there are only slight differences between the illogical response and the dialogue history. How to effectively solve this challenge is still worth exploring. This paper proposes a Fine-grained Comparison Model (FCM) to tackle this problem. Inspired by human’s behavior in reading comprehension, a comparison mechanism is proposed to focus on the fine-grained differences in the representation of each response candidate. Specifically, each candidate representation is compared with the whole history to obtain a history consistency representation. Furthermore, the consistency signals between each candidate and the speaker’s own history are considered to drive a model prefer a candidate that is logically consistent with the speaker’s history logic. Finally, the above consistency representations are employed to output a ranking list of the candidate responses for multi-turn dialogue reasoning. Experimental results on two public dialogue datasets show that our method obtains higher ranking scores than the baseline models.


pdf bib
Modelling Long-distance Node Relations for KBQA with Global Dynamic Graph
Xu Wang | Shuai Zhao | Jiale Han | Bo Cheng | Hao Yang | Jianchang Ao | Zhenzi Li
Proceedings of the 28th International Conference on Computational Linguistics

The structural information of Knowledge Bases (KBs) has proven effective to Question Answering (QA). Previous studies rely on deep graph neural networks (GNNs) to capture rich structural information, which may not model node relations in particularly long distance due to oversmoothing issue. To address this challenge, we propose a novel framework GlobalGraph, which models long-distance node relations from two views: 1) Node type similarity: GlobalGraph assigns each node a global type label and models long-distance node relations through the global type label similarity; 2) Correlation between nodes and questions: we learn similarity scores between nodes and the question, and model long-distance node relations through the sum score of two nodes. We conduct extensive experiments on two widely used multi-hop KBQA datasets to prove the effectiveness of our method.

pdf bib
Open Domain Question Answering based on Text Enhanced Knowledge Graph with Hyperedge Infusion
Jiale Han | Bo Cheng | Xu Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

The incompleteness of knowledge base (KB) is a vital factor limiting the performance of question answering (QA). This paper proposes a novel QA method by leveraging text information to enhance the incomplete KB. The model enriches the entity representation through semantic information contained in the text, and employs graph convolutional networks to update the entity status. Furthermore, to exploit the latent structural information of text, we treat the text as hyperedges connecting entities among it to complement the deficient relations in KB, and hypergraph convolutional networks are further applied to reason on the hypergraph-formed text. Extensive experiments on the WebQuestionsSP benchmark with different KB settings prove the effectiveness of our model.