Xuan Li


2023

pdf bib
PAI at SemEval-2023 Task 4: A General Multi-label Classification System with Class-balanced Loss Function and Ensemble Module
Long Ma | Zeye Sun | Jiawei Jiang | Xuan Li
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

The Human Value Detection shared task\cite{kiesel:2023} aims to classify whether or not the argument draws on a set of 20 value categories, given a textual argument. This is a difficult task as the discrimination of human values behind arguments is often implicit. Moreover, the number of label categories can be up to 20 and the distribution of data is highly imbalanced. To address these issues, we employ a multi-label classification model and utilize a class-balanced loss function. Our system wins 5 first places, 2 second places, and 6 third places out of 20 categories of the Human Value Detection shared task, and our overall average score of 0.54 also places third. The code is publicly available at \url{https://www.github.com/diqiuzhuanzhuan/semeval2023}.

pdf bib
PAI at SemEval-2023 Task 2: A Universal System for Named Entity Recognition with External Entity Information
Long Ma | Kai Lu | Tianbo Che | Hailong Huang | Weiguo Gao | Xuan Li
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

The MultiCoNER II task aims to detect complex, ambiguous, and fine-grained named entities in low-context situations and noisy scenarios like the presence of spelling mistakes and typos for multiple languages. The task poses significant challenges due to the scarcity of contextual information, the high granularity of the entities(up to 33 classes), and the interference of noisy data. To address these issues, our team PAI proposes a universal Named Entity Recognition (NER) system that integrates external entity information to improve performance. Specifically, our system retrieves entities with properties from the knowledge base (i.e. Wikipedia) for a given text, then concatenates entity information with the input sentence and feeds it into Transformer-based models. Finally, our system wins 2 first places, 4 second places, and 1 third place out of 13 tracks. The code is publicly available at https://github.com/diqiuzhuanzhuan/semeval-2023.

pdf bib
SPLIT: Stance and Persuasion Prediction with Multi-modal on Image and Textual Information
Jing Zhang | Shaojun Yu | Xuan Li | Jia Geng | Zhiyuan Zheng | Joyce Ho
Proceedings of the 10th Workshop on Argument Mining

Persuasiveness is a prominent personality trait that measures the extent to which a speaker can impact the beliefs, attitudes, intentions, motivations, and actions of their audience. The ImageArg task is a featured challenge at the 10th ArgMining Workshop during EMNLP 2023, focusing on harnessing the potential of the ImageArg dataset to advance techniques in multimodal persuasion. In this study, we investigate the utilization of dual-modality datasets and evaluate three distinct multi-modality models. By enhancing multi-modality datasets, we demonstrate both the advantages and constraints of cutting-edge models.

2022

pdf bib
PAI at SemEval-2022 Task 11: Name Entity Recognition with Contextualized Entity Representations and Robust Loss Functions
Long Ma | Xiaorong Jian | Xuan Li
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes our system used in the SemEval-2022 Task 11 Multilingual Complex Named Entity Recognition, achieving 3rd for track 1 on the leaderboard. We propose Dictionary-fused BERT, a flexible approach for entity dictionaries integration. The main ideas of our systems are:1) integrating external knowledge (an entity dictionary) into pre-trained models to obtain contextualized word and entity representations 2) designing a robust loss function leveraging a logit matrix 3) adding an auxiliary task, which is an on-top binary classification to decide whether the token is a mention word or not, makes the main task easier to learn. It is worth noting that our system achieves an F1 of 0.914 in the post-evaluation stage by updating the entity dictionary to the one of (CITATION), which is higher than the score of 1st on the leaderboard of the evaluation stage.

2021

pdf bib
1213Li at SemEval-2021 Task 6: Detection of Propaganda with Multi-modal Attention and Pre-trained Models
Peiguang Li | Xuan Li | Xian Sun
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents the solution proposed by the 1213Li team for subtask 3 in SemEval-2021 Task 6: identifying the multiple persuasion techniques used in the multi-modal content of the meme. We explored various approaches in feature extraction and the detection of persuasion labels. Our final model employs pre-trained models including RoBERTa and ResNet-50 as a feature extractor for texts and images, respectively, and adopts a label embedding layer with multi-modal attention mechanism to measure the similarity of labels with the multi-modal information and fuse features for label prediction. Our proposed method outperforms the provided baseline method and achieves 3rd out of 16 participants with 0.54860/0.22830 for Micro/Macro F1 scores.

pdf bib
DialogueTRM: Exploring Multi-Modal Emotional Dynamics in a Conversation
Yuzhao Mao | Guang Liu | Xiaojie Wang | Weiguo Gao | Xuan Li
Findings of the Association for Computational Linguistics: EMNLP 2021

Emotion dynamics formulates principles explaining the emotional fluctuation during conversations. Recent studies explore the emotion dynamics from the self and inter-personal dependencies, however, ignoring the temporal and spatial dependencies in the situation of multi-modal conversations. To address the issue, we extend the concept of emotion dynamics to multi-modal settings and propose a Dialogue Transformer for simultaneously modeling the intra-modal and inter-modal emotion dynamics. Specifically, the intra-modal emotion dynamics is to not only capture the temporal dependency but also satisfy the context preference in every single modality. The inter-modal emotional dynamics aims at handling multi-grained spatial dependency across all modalities. Our models outperform the state-of-the-art with a margin of 4%-16% for most of the metrics on three benchmark datasets.