Xuan Liu


pdf bib
I am PsyAM: Modeling Happiness with Cognitive Appraisal Dimensions
Xuan Liu | Kokil Jaidka
Findings of the Association for Computational Linguistics: ACL 2023

This paper proposes and evaluates PsyAM (https://anonymous.4open.science/r/BERT-PsyAM-10B9), a framework that incorporates adaptor modules in a sequential multi-task learning setup to generate high-dimensional feature representations of hedonic well-being (momentary happiness) in terms of its psychological underpinnings. PsyAM models emotion in text through its cognitive antecedents through auxiliary models that achieve multi-task learning through novel feature fusion methods. We show that BERT-PsyAM has cross-task validity and cross-domain generalizability through experiments with emotion-related tasks – on new emotion tasks and new datasets, as well as against traditional methods and BERT baselines. We further probe the robustness of BERT-PsyAM through feature ablation studies, as well as discuss the qualitative inferences we can draw regarding the effectiveness of the framework for representing emotional states. We close with a discussion of a future agenda of psychology-inspired neural network architectures.

pdf bib
Reaction Miner: An Integrated System for Chemical Reaction Extraction from Textual Data
Ming Zhong | Siru Ouyang | Yizhu Jiao | Priyanka Kargupta | Leo Luo | Yanzhen Shen | Bobby Zhou | Xianrui Zhong | Xuan Liu | Hongxiang Li | Jinfeng Xiao | Minhao Jiang | Vivian Hu | Xuan Wang | Heng Ji | Martin Burke | Huimin Zhao | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Chemical reactions, as a core entity in the realm of chemistry, hold crucial implications in diverse areas ranging from hands-on laboratory research to advanced computational drug design. Despite a burgeoning interest in employing NLP techniques to extract these reactions, aligning this task with the real-world requirements of chemistry practitioners remains an ongoing challenge. In this paper, we present Reaction Miner, a system specifically designed to interact with raw scientific literature, delivering precise and more informative chemical reactions. Going beyond mere extraction, Reaction Miner integrates a holistic workflow: it accepts PDF files as input, bypassing the need for pre-processing and bolstering user accessibility. Subsequently, a text segmentation module ensures that the refined text encapsulates complete chemical reactions, augmenting the accuracy of extraction. Moreover, Reaction Miner broadens the scope of existing pre-defined reaction roles, including vital attributes previously neglected, thereby offering a more comprehensive depiction of chemical reactions. Evaluations conducted by chemistry domain users highlight the efficacy of each module in our system, demonstrating Reaction Miner as a powerful tool in this field.


pdf bib
Cross-lingual Text Classification with Heterogeneous Graph Neural Network
Ziyun Wang | Xuan Liu | Peiji Yang | Shixing Liu | Zhisheng Wang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Cross-lingual text classification aims at training a classifier on the source language and transferring the knowledge to target languages, which is very useful for low-resource languages. Recent multilingual pretrained language models (mPLM) achieve impressive results in cross-lingual classification tasks, but rarely consider factors beyond semantic similarity, causing performance degradation between some language pairs. In this paper we propose a simple yet effective method to incorporate heterogeneous information within and across languages for cross-lingual text classification using graph convolutional networks (GCN). In particular, we construct a heterogeneous graph by treating documents and words as nodes, and linking nodes with different relations, which include part-of-speech roles, semantic similarity, and document translations. Extensive experiments show that our graph-based method significantly outperforms state-of-the-art models on all tasks, and also achieves consistent performance gain over baselines in low-resource settings where external tools like translators are unavailable.


pdf bib
DuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications
Wei He | Kai Liu | Jing Liu | Yajuan Lyu | Shiqi Zhao | Xinyan Xiao | Yuan Liu | Yizhong Wang | Hua Wu | Qiaoqiao She | Xuan Liu | Tian Wu | Haifeng Wang
Proceedings of the Workshop on Machine Reading for Question Answering

This paper introduces DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, designed to address real-world MRC. DuReader has three advantages over previous MRC datasets: (1) data sources: questions and documents are based on Baidu Search and Baidu Zhidao; answers are manually generated. (2) question types: it provides rich annotations for more question types, especially yes-no and opinion questions, that leaves more opportunity for the research community. (3) scale: it contains 200K questions, 420K answers and 1M documents; it is the largest Chinese MRC dataset so far. Experiments show that human performance is well above current state-of-the-art baseline systems, leaving plenty of room for the community to make improvements. To help the community make these improvements, both DuReader and baseline systems have been posted online. We also organize a shared competition to encourage the exploration of more models. Since the release of the task, there are significant improvements over the baselines.

pdf bib
Binarized LSTM Language Model
Xuan Liu | Di Cao | Kai Yu
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Long short-term memory (LSTM) language model (LM) has been widely investigated for automatic speech recognition (ASR) and natural language processing (NLP). Although excellent performance is obtained for large vocabulary tasks, tremendous memory consumption prohibits the use of LSTM LM in low-resource devices. The memory consumption mainly comes from the word embedding layer. In this paper, a novel binarized LSTM LM is proposed to address the problem. Words are encoded into binary vectors and other LSTM parameters are further binarized to achieve high memory compression. This is the first effort to investigate binary LSTM for large vocabulary LM. Experiments on both English and Chinese LM and ASR tasks showed that can achieve a compression ratio of 11.3 without any loss of LM and ASR performances and a compression ratio of 31.6 with acceptable minor performance degradation.


pdf bib
Multi-view Response Selection for Human-Computer Conversation
Xiangyang Zhou | Daxiang Dong | Hua Wu | Shiqi Zhao | Dianhai Yu | Hao Tian | Xuan Liu | Rui Yan
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing