Xuancheng Huang


2023

pdf bib
An Extensible Plug-and-Play Method for Multi-Aspect Controllable Text Generation
Xuancheng Huang | Zijun Liu | Peng Li | Tao Li | Maosong Sun | Yang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, multi-aspect controllable text generation that controls the generated text in multiple aspects (e.g., sentiment, topic, and keywords) has attracted increasing attention. Although methods based on parameter efficient tuning like prefix-tuning could achieve multi-aspect controlling in a plug-and-play way, the mutual interference of multiple prefixes leads to significant degeneration of constraints and limits their extensibility to training-time unseen aspect combinations. In this work, we provide a theoretical lower bound for the interference and empirically found that the interference grows with the number of layers where prefixes are inserted. Based on these analyses, we propose using trainable gates to normalize the intervention of prefixes to restrain the growing interference. As a result, controlling training-time unseen combinations of aspects can be realized by simply concatenating corresponding plugins such that new constraints can be extended at a lower cost. In addition, we propose a unified way to process both categorical and free-form constraints. Experiments on text generation and machine translation demonstrate the superiority of our approach over baselines on constraint accuracy, text quality, and extensibility.

2021

pdf bib
Transfer Learning for Sequence Generation: from Single-source to Multi-source
Xuancheng Huang | Jingfang Xu | Maosong Sun | Yang Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Multi-source sequence generation (MSG) is an important kind of sequence generation tasks that takes multiple sources, including automatic post-editing, multi-source translation, multi-document summarization, etc. As MSG tasks suffer from the data scarcity problem and recent pretrained models have been proven to be effective for low-resource downstream tasks, transferring pretrained sequence-to-sequence models to MSG tasks is essential. Although directly finetuning pretrained models on MSG tasks and concatenating multiple sources into a single long sequence is regarded as a simple method to transfer pretrained models to MSG tasks, we conjecture that the direct finetuning method leads to catastrophic forgetting and solely relying on pretrained self-attention layers to capture cross-source information is not sufficient. Therefore, we propose a two-stage finetuning method to alleviate the pretrain-finetune discrepancy and introduce a novel MSG model with a fine encoder to learn better representations in MSG tasks. Experiments show that our approach achieves new state-of-the-art results on the WMT17 APE task and multi-source translation task using the WMT14 test set. When adapted to document-level translation, our framework outperforms strong baselines significantly.

2020

pdf bib
THUMT: An Open-Source Toolkit for Neural Machine Translation
Zhixing Tan | Jiacheng Zhang | Xuancheng Huang | Gang Chen | Shuo Wang | Maosong Sun | Huanbo Luan | Yang Liu
Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

2019

pdf bib
Learning to Copy for Automatic Post-Editing
Xuancheng Huang | Yang Liu | Huanbo Luan | Jingfang Xu | Maosong Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Automatic post-editing (APE), which aims to correct errors in the output of machine translation systems in a post-processing step, is an important task in natural language processing. While recent work has achieved considerable performance gains by using neural networks, how to model the copying mechanism for APE remains a challenge. In this work, we propose a new method for modeling copying for APE. To better identify translation errors, our method learns the representations of source sentences and system outputs in an interactive way. These representations are used to explicitly indicate which words in the system outputs should be copied. Finally, CopyNet (Gu et.al., 2016) can be combined with our method to place the copied words in correct positions in post-edited translations. Experiments on the datasets of the WMT 2016-2017 APE shared tasks show that our approach outperforms all best published results.