Xudong Lin


2024

pdf bib
VIEWS: Entity-Aware News Video Captioning
Hammad Ayyubi | Tianqi Liu | Arsha Nagrani | Xudong Lin | Mingda Zhang | Anurag Arnab | Feng Han | Yukun Zhu | Xuande Feng | Kevin Zhang | Jialu Liu | Shih-Fu Chang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Existing popular video captioning benchmarks and models often produce generic captions for videos that lack specific identification of individuals, locations, or organizations (named entities). However, in the case of news videos, the setting is more demanding, requiring the inclusion of such named entities for meaningful summarization. Therefore, we introduce the task of directly summarizing news videos into captions that are entity-aware. To facilitate research in this area, we have collected a large-scale dataset named VIEWS (VIdeo NEWS). Within this task, we face challenges inherent to recognizing named entities and navigating diverse, dynamic contexts, all while relying solely on visual cues. To address these challenges, we propose a model-agnostic approach that enriches visual information extracted from videos with context sourced from external knowledge, enabling the generation of entity-aware captions. We validate the effectiveness of our approach across three video captioning models. Additionally, we conduct a critical analysis of our methodology to gain insights into the complexity of the task, the challenges it presents, and potential avenues for future research.

pdf bib
Training-free Deep Concept Injection Enables Language Models for Video Question Answering
Xudong Lin | Manling Li | Richard Zemel | Heng Ji | Shih-Fu Chang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recently, enabling pretrained language models (PLMs) to perform zero-shot crossmodal tasks such as video question answering has been extensively studied. A popular approach is to learn a projection network that projects visual features into the input text embedding space of a PLM, as well as feed-forward adaptation layers, with the weights of the PLM frozen. However, is it really necessary to learn such additional layers? In this paper, we make the first attempt to demonstrate that the PLM is able to perform zero-shot crossmodal tasks without any crossmodal pretraining, when the observed visual concepts are injected as both additional input text tokens and augmentation in the intermediate features within each feed-forward network for the PLM. Specifically, inputting observed visual concepts as text tokens helps to inject them through the self-attention layers in the PLM; to augment the intermediate features in a way that is compatible with the PLM, we propose to construct adaptation layers based on the intermediate representation of concepts (obtained by solely inputting them to the PLM). These two complementary injection mechanisms form the proposed Deep Concept Injection, which comprehensively enables the PLM to perceive instantly without crossmodal pretraining. Extensive empirical analysis on zero-shot video question answering, as well as visual question answering, shows Deep Concept Injection achieves competitive or even better results in both zero-shot and fine-tuning settings, compared to state-of-the-art methods that require crossmodal pretraining.

pdf bib
Unveiling Narrative Reasoning Limits of Large Language Models with Trope in Movie Synopses
Hung-Ting Su | Ya-Ching Hsu | Xudong Lin | Xiang-Qian Shi | Yulei Niu | Han-Yuan Hsu | Hung-yi Lee | Winston H. Hsu
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) equipped with chain-of-thoughts (CoT) prompting have shown significant multi-step reasoning capabilities in factual content like mathematics, commonsense, and logic. However, their performance in narrative reasoning, which demands greater abstraction capabilities, remains unexplored. This study utilizes tropes in movie synopses to assess the abstract reasoning abilities of state-of-the-art LLMs and uncovers their low performance. We introduce a trope-wise querying approach to address these challenges and boost the F1 score by 11.8 points. Moreover, while prior studies suggest that CoT enhances multi-step reasoning, this study shows CoT can cause hallucinations in narrative content, reducing GPT-4’s performance. We also introduce an Adversarial Injection method to embed trope-related text tokens into movie synopses without explicit tropes, revealing CoT’s heightened sensitivity to such injections. Our comprehensive analysis provides insights for future research directions.

pdf bib
Personalized Video Comment Generation
Xudong Lin | Ali Zare | Shiyuan Huang | Ming-Hsuan Yang | Shih-Fu Chang | Li Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Generating personalized responses, particularly in the context of video, poses a unique challenge for language models. This paper introduces the novel task of Personalized Video Comment Generation (PVCG), aiming to predict user comments tailored to both the input video and the user’s comment history, where the user is unseen during the model training process. Unlike existing video captioning tasks that ignores the personalization in the text generation process, we introduce PerVidCom, a new dataset specifically collected for this novel task with diverse personalized comments from YouTube. Recognizing the limitations of existing captioning metrics for evaluating this task, we propose a new automatic metric based on Large Language Models (LLMs) with few-shot in-context learning, named FICL-Score, specifically measuring quality from the aspects of emotion, language style and content relevance. We verify the proposed metric with human evaluations. We establish baselines using prominent Multimodal LLMs (MLLMs), analyze their performance discrepancies through extensive evaluation, and identifies directions for future improvement on this important task. Our research opens up a new direction of personalizing MLLMs and paves the way for future research.

2023

pdf bib
Non-Sequential Graph Script Induction via Multimedia Grounding
Yu Zhou | Sha Li | Manling Li | Xudong Lin | Shih-Fu Chang | Mohit Bansal | Heng Ji
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Online resources such as WikiHow compile a wide range of scripts for performing everyday tasks, which can assist models in learning to reason about procedures. However, the scripts are always presented in a linear manner, which does not reflect the flexibility displayed by people executing tasks in real life. For example, in the CrossTask Dataset, 64.5% of consecutive step pairs are also observed in the reverse order, suggesting their ordering is not fixed. In addition, each step has an average of 2.56 frequent next steps, demonstrating “branching”. In this paper, we propose the new challenging task of non-sequential graph script induction, aiming to capture optional and interchangeable steps in procedural planning. To automate the induction of such graph scripts for given tasks, we propose to take advantage of loosely aligned videos of people performing the tasks. In particular, we design a multimodal framework to ground procedural videos to WikiHow textual steps and thus transform each video into an observed step path on the latent ground truth graph script. This key transformation enables us to train a script knowledge model capable of both generating explicit graph scripts for learnt tasks and predicting future steps given a partial step sequence. Our best model outperforms the strongest pure text/vision baselines by 17.52% absolute gains on F1@3 for next step prediction and 13.8% absolute gains on Acc@1 for partial sequence completion. Human evaluation shows our model outperforming the WikiHow linear baseline by 48.76% absolute gains in capturing sequential and non-sequential step relationships.

2022

pdf bib
Weakly-Supervised Temporal Article Grounding
Long Chen | Yulei Niu | Brian Chen | Xudong Lin | Guangxing Han | Christopher Thomas | Hammad Ayyubi | Heng Ji | Shih-Fu Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Given a long untrimmed video and natural language queries, video grounding (VG) aims to temporally localize the semantically-aligned video segments. Almost all existing VG work holds two simple but unrealistic assumptions: 1) All query sentences can be grounded in the corresponding video. 2) All query sentences for the same video are always at the same semantic scale. Unfortunately, both assumptions make today’s VG models fail to work in practice. For example, in real-world multimodal assets (eg, news articles), most of the sentences in the article can not be grounded in their affiliated videos, and they typically have rich hierarchical relations (ie, at different semantic scales). To this end, we propose a new challenging grounding task: Weakly-Supervised temporal Article Grounding (WSAG). Specifically, given an article and a relevant video, WSAG aims to localize all “groundable” sentences to the video, and these sentences are possibly at different semantic scales. Accordingly, we collect the first WSAG dataset to facilitate this task: YouwikiHow, which borrows the inherent multi-scale descriptions in wikiHow articles and plentiful YouTube videos. In addition, we propose a simple but effective method DualMIL for WSAG, which consists of a two-level MIL loss and a single-/cross- sentence constraint loss. These training objectives are carefully designed for these relaxed assumptions. Extensive ablations have verified the effectiveness of DualMIL.

pdf bib
RESIN-11: Schema-guided Event Prediction for 11 Newsworthy Scenarios
Xinya Du | Zixuan Zhang | Sha Li | Pengfei Yu | Hongwei Wang | Tuan Lai | Xudong Lin | Ziqi Wang | Iris Liu | Ben Zhou | Haoyang Wen | Manling Li | Darryl Hannan | Jie Lei | Hyounghun Kim | Rotem Dror | Haoyu Wang | Michael Regan | Qi Zeng | Qing Lyu | Charles Yu | Carl Edwards | Xiaomeng Jin | Yizhu Jiao | Ghazaleh Kazeminejad | Zhenhailong Wang | Chris Callison-Burch | Mohit Bansal | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Martha Palmer | Heng Ji
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.

2021

pdf bib
Coreference by Appearance: Visually Grounded Event Coreference Resolution
Liming Wang | Shengyu Feng | Xudong Lin | Manling Li | Heng Ji | Shih-Fu Chang
Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference

Event coreference resolution is critical to understand events in the growing number of online news with multiple modalities including text, video, speech, etc. However, the events and entities depicting in different modalities may not be perfectly aligned and can be difficult to annotate, which makes the task especially challenging with little supervision available. To address the above issues, we propose a supervised model based on attention mechanism and an unsupervised model based on statistical machine translation, capable of learning the relative importance of modalities for event coreference resolution. Experiments on a video multimedia event dataset show that our multimodal models outperform text-only systems in event coreference resolution tasks. A careful analysis reveals that the performance gain of the multimodal model especially under unsupervised settings comes from better learning of visually salient events.

pdf bib
Joint Multimedia Event Extraction from Video and Article
Brian Chen | Xudong Lin | Christopher Thomas | Manling Li | Shoya Yoshida | Lovish Chum | Heng Ji | Shih-Fu Chang
Findings of the Association for Computational Linguistics: EMNLP 2021

Visual and textual modalities contribute complementary information about events described in multimedia documents. Videos contain rich dynamics and detailed unfoldings of events, while text describes more high-level and abstract concepts. However, existing event extraction methods either do not handle video or solely target video while ignoring other modalities. In contrast, we propose the first approach to jointly extract events from both video and text articles. We introduce the new task of Video MultiMedia Event Extraction and propose two novel components to build the first system towards this task. First, we propose the first self-supervised cross-modal event coreference model that can determine coreference between video events and text events without any manually annotated pairs. Second, we introduce the first cross-modal transformer architecture, which extracts structured event information from both videos and text documents. We also construct and will publicly release a new benchmark of video-article pairs, consisting of 860 video-article pairs with extensive annotations for evaluating methods on this task. Our experimental results demonstrate the effectiveness of our proposed method on our new benchmark dataset. We achieve 6.0% and 5.8% absolute F-score gain on multimodal event coreference resolution and multimedia event extraction.

pdf bib
RESIN: A Dockerized Schema-Guided Cross-document Cross-lingual Cross-media Information Extraction and Event Tracking System
Haoyang Wen | Ying Lin | Tuan Lai | Xiaoman Pan | Sha Li | Xudong Lin | Ben Zhou | Manling Li | Haoyu Wang | Hongming Zhang | Xiaodong Yu | Alexander Dong | Zhenhailong Wang | Yi Fung | Piyush Mishra | Qing Lyu | Dídac Surís | Brian Chen | Susan Windisch Brown | Martha Palmer | Chris Callison-Burch | Carl Vondrick | Jiawei Han | Dan Roth | Shih-Fu Chang | Heng Ji
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.