Xuefeng Su


2023

pdf bib
基于框架语义场景图的零形式填充方法(A Null Instantiation Filling Method based Frame Semantic Scenario Graph)
Yuzhi Wang (王俞智) | Ru Li (李茹) | Xuefeng Su (苏雪峰) | Zhichao Yan (闫智超) | Juncai Li (李俊材)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics

“零形式填充是在篇章上下文中为给定句子中的隐式框架语义角色找到相应的填充内容。传统的零形式填充方法采用pipeline模型,容易造成错误传播,并且忽略了显式语义角色及其填充内容的重要性。针对上述问题,本文提出了一种端到端的零形式填充方法,该方法结合汉语框架网信息构建出框架语义场景图并利用GAT对其建模,得到融合了显式框架元素信息的候选填充项表示,增强了模型对句中隐式语义成分的识别能力。在汉语零形式填充数据集上的实验表明,本文提出的模型相较于基于Bert的基线模型F1值提升了9.16%,证明了本文提出方法的有效性。”

pdf bib
CCL23-Eval 任务3总结报告:汉语框架语义解析评测(Overview of CCL23-Eval Task 1:Chinese FrameNet Semantic Parsing)
Juncai Li (李俊材) | Zhichao Yan (闫智超) | Xuefeng Su (苏雪峰) | Boxiang Ma (马博翔) | Peiyuan Yang1 (杨沛渊) | Ru Li (李茹)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“汉语框架语义解析评测任务致力于提升机器模型理解细粒度语义信息的能力。该评测数据集包括20000条标注的框架语义解析例句和近700个框架信息。评测任务分为框架识别、论元范围识别和论元角色识别三个子任务,最终成绩根据这三个任务的得分综合计算。本次评测受到工业界和学术界的广泛关注,共有55支队伍报名参赛,其中12支队伍提交了结果,我们选取5支队伍的模型进行结果复现,最终来自四川的李作恒以71.49的分数排名第一。该任务的更多信息,包括系统提交、评测结果以及数据资源,可从CCL-2023汉语框架语义解析评测任务网址1查看。”

2022

pdf bib
基于GCN和门机制的汉语框架排歧方法(Chinese Frame Disambiguation Method Based on GCN and Gate Mechanism)
Yanan You (游亚男) | Ru Li (李茹) | Xuefeng Su (苏雪峰) | Zhichao Yan (闫智超) | Minshuai Sun (孙民帅) | Chao Wang (王超)
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“汉语框架排歧旨在候选框架中给句子中的目标词选择一个符合其语义场景的框架。目前研究方法存在隐层向量的计算与目标词无关,并且忽略了句法结构信息对框架排歧的影响等缺陷。针对上述问题,使用GCN对句法结构信息进行建模;引入门机制过滤隐层向量中与目标词无关的噪声信息;并在此基础上,提出一种约束机制来约束模型的学习,改进向量表示。该模型在CFN、FN1.5和FN1.7数据集上优于当前最好模型,证明了方法的有效性。”

pdf bib
基于框架语义映射和类型感知的篇章事件抽取(Document-Level Event Extraction Based on Frame Semantic Mapping and Type Awareness)
Jiang Lu (卢江) | Ru Li (李茹) | Xuefeng Su (苏雪峰) | Zhichao Yan (闫智超) | Jiaxing Chen (陈加兴)
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“篇章事件抽取是从给定的文本中识别其事件类型和事件论元。目前篇章事件普遍存在数据稀疏和多值论元耦合的问题。基于此,本文将汉语框架网(CFN)与中文篇章事件建立映射,同时引入滑窗机制和触发词释义改善了事件检测的数据稀疏问题;使用基于类型感知标签的多事件分离策略缓解了论元耦合问题。为了提升模型的鲁棒性,进一步引入对抗训练。本文提出的方法在DuEE-Fin和CCKS2021数据集上实验结果显著优于现有方法。”

2021

pdf bib
A Knowledge-Guided Framework for Frame Identification
Xuefeng Su | Ru Li | Xiaoli Li | Jeff Z. Pan | Hu Zhang | Qinghua Chai | Xiaoqi Han
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Frame Identification (FI) is a fundamental and challenging task in frame semantic parsing. The task aims to find the exact frame evoked by a target word in a given sentence. It is generally regarded as a classification task in existing work, where frames are treated as discrete labels or represented using onehot embeddings. However, the valuable knowledge about frames is neglected. In this paper, we propose a Knowledge-Guided Frame Identification framework (KGFI) that integrates three types frame knowledge, including frame definitions, frame elements and frame-to-frame relations, to learn better frame representation, which guides the KGFI to jointly map target words and frames into the same embedding space and subsequently identify the best frame by calculating the dot-product similarity scores between the target word embedding and all of the frame embeddings. The extensive experimental results demonstrate KGFI significantly outperforms the state-of-the-art methods on two benchmark datasets.