While large language models (LLMs) excel in various natural language processing tasks, their huge size and the inaccessibility of parameters present challenges for practical deployment. Previous studies try to distill task-specific ability from LLMs to smaller models, using data synthesis and chain-of-thought (CoT) fine-tuning. However, synthetic CoT data often contains faulty reasoning, which deteriorates the quality of distillation, especially in reasoning capabilities. In this work, we propose Program-aided Distillation (PaD), which introduces reasoning programs to suppress the errors in distilled data, and thus achieves better distillation quality for reasoning tasks. In PaD, we utilize the reasoning program to substitute the CoT, allowing automated error checking of synthetic data. Further, through error injecting and further training, the small distilling model could iteratively self-refine the reasoning. Moreover, we conduct a step-wise beam search by step-by-step verifying to acquire more exact reasoning chains. We evaluate PaD on arithmetic reasoning, symbolic reasoning, and general ability.Experimental results demonstrate that smaller models using PaD can not only outperform certain LLMs (e.g., LLaMA-1 13B) but also achieve strong improvement over baselines with a significantly smaller scale of parameters and data. The source code is publicly available athttps://github.com/Xuekai-Zhu/pad.
Non-parallel text style transfer is an important task in natural language generation. However, previous studies concentrate on the token or sentence level, such as sentence sentiment and formality transfer, but neglect long style transfer at the discourse level. Long texts usually involve more complicated author linguistic preferences such as discourse structures than sentences. In this paper, we formulate the task of non-parallel story author-style transfer, which requires transferring an input story into a specified author style while maintaining source semantics. To tackle this problem, we propose a generation model, named StoryTrans, which leverages discourse representations to capture source content information and transfer them to target styles with learnable style embeddings. We use an additional training objective to disentangle stylistic features from the learned discourse representation to prevent the model from degenerating to an auto-encoder. Moreover, to enhance content preservation, we design a mask-and-fill framework to explicitly fuse style-specific keywords of source texts into generation. Furthermore, we constructed new datasets for this task in Chinese and English, respectively. Extensive experiments show that our model outperforms strong baselines in overall performance of style transfer and content preservation.
Instruction tuning has recently been recognized as an effective way of aligning Large Language Models (LLMs) to enhance their generalization ability across various tasks. However, when tuning publicly accessible, centralized LLMs with private instruction data, privacy concerns are inevitable. While direct transfer of parameterized modules between models is a plausible approach to address this, its implications and effectiveness need further exploration. This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators. Given the limited understanding of the underlying mechanism of OFT, we perform an empirical analysis on LLMs from the perspectives of representation and functional similarity. Interestingly, our findings reveal a unique modular structure within the layers of LLMs that appears to emerge as the model size expands. Simultaneously, we note subtle but potentially significant changes in representation and intermediate predictions across the layers. Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs. CRaSh significantly boosts performance of OFT with billions of parameters. Furthermore, we investigate the optimal solutions yielded by fine-tuning with and without full model through the lens of loss landscape. Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.