In this paper, we generate and compare three types of explanations of Machine Learning (ML) predictions: simple, conservative and unifying. Simple explanations are concise, conservative explanations address the surprisingness of a prediction, and unifying explanations convey the extent to which an ML model’s predictions are applicable. The results of our user study show that (1) conservative and unifying explanations are liked equally and considered largely equivalent in terms of completeness, helpfulness for understanding the AI, and enticement to act, and both are deemed better than simple explanations; and (2)users’ views about explanations are influenced by the (dis)agreement between the ML model’s predictions and users’ estimations of these predictions, and by the inclusion/omission of features users expect to see in explanations.
The importance of explaining the outcome of a machine learning model, especially a black-box model, is widely acknowledged. Recent approaches explain an outcome by identifying the contributions of input features to this outcome. In environments involving large black-box models or complex inputs, this leads to computationally demanding algorithms. Further, these algorithms often suffer from low stability, with explanations varying significantly across similar examples. In this paper, we propose a Learning to Explain (L2E) approach that learns the behaviour of an underlying explanation algorithm simultaneously from all training examples. Once the explanation algorithm is distilled into an explainer network, it can be used to explain new instances. Our experiments on three classification tasks, which compare our approach to six explanation algorithms, show that L2E is between 5 and 7.5×10ˆ4 times faster than these algorithms, while generating more stable explanations, and having comparable faithfulness to the black-box model.
Lifelong Learning (LL) black-box models are dynamic in that they keep learning from new tasks and constantly update their parameters. Owing to the need to utilize information from previously seen tasks, and capture commonalities in potentially diverse data, it is hard for automatic explanation methods to explain the outcomes of these models. In addition, existing explanation methods, e.g., LIME, which are computationally expensive when explaining a static black-box model, are even more inefficient in the LL setting. In this paper, we propose a novel Lifelong Explanation (LLE) approach that continuously trains a student explainer under the supervision of a teacher – an arbitrary explanation algorithm – on different tasks undertaken in LL. We also leverage the Experience Replay (ER) mechanism to prevent catastrophic forgetting in the student explainer. Our experiments comparing LLE to three baselines on text classification tasks show that LLE can enhance the stability of the explanations for all seen tasks and maintain the same level of faithfulness to the black-box model as the teacher, while being up to 10ˆ2 times faster at test time. Our ablation study shows that the ER mechanism in our LLE approach enhances the learning capabilities of the student explainer. Our code is available at
https://github.com/situsnow/LLE.