Xuelong Li
2024
Dual Prompt Tuning based Contrastive Learning for Hierarchical Text Classification
Sishi Xiong
|
Yu Zhao
|
Jie Zhang
|
Li Mengxiang
|
Zhongjiang He
|
Xuelong Li
|
Shuangyong Song
Findings of the Association for Computational Linguistics: ACL 2024
Hierarchical text classification aims at categorizing texts into a multi-tiered tree-structured hierarchy of labels. Existing methods pay more attention to capture hierarchy-aware text feature by exploiting explicit parent-child relationships, while interactions between peer labels are rarely taken into account, resulting in severe label confusion within each layer. In this work, we propose a novel Dual Prompt Tuning (DPT) method, which emphasizes identifying discrimination among peer labels by performing contrastive learning on each hierarchical layer. We design an innovative hand-crafted prompt containing slots for both positive and negative label predictions to cooperate with contrastive learning. In addition, we introduce a label hierarchy self-sensing auxiliary task to ensure cross-layer label consistency. Extensive experiments demonstrate that DPT achieves significant improvements and outperforms the current state-of-the-art methods on BGC and RCV1-V2 benchmark datasets.
2022
Search to Pass Messages for Temporal Knowledge Graph Completion
Zhen Wang
|
Haotong Du
|
Quanming Yao
|
Xuelong Li
Findings of the Association for Computational Linguistics: EMNLP 2022
Completing missing facts is a fundamental task for temporal knowledge graphs (TKGs).Recently, graph neural network (GNN) based methods, which can simultaneously explore topological and temporal information, have become the state-of-the-art (SOTA) to complete TKGs. However, these studies are based on hand-designed architectures and fail to explore the diverse topological and temporal properties of TKG.To address this issue, we propose to use neural architecture search (NAS) to design data-specific message passing architecture for TKG completion.In particular, we develop a generalized framework to explore topological and temporal information in TKGs.Based on this framework, we design an expressive search space to fully capture various properties of different TKGs. Meanwhile, we adopt a search algorithm, which trains a supernet structure by sampling single path for efficient search with less cost.We further conduct extensive experiments on three benchmark datasets. The results show that the searched architectures by our method achieve the SOTA performances.Besides, the searched models can also implicitly reveal diverse properties in different TKGs.Our code is released in https://github.com/striderdu/SPA.
Search
Co-authors
- Sishi Xiong 1
- Yu Zhao 1
- Jie Zhang 1
- Li Mengxiang 1
- Zhongjiang He 1
- show all...