Xuemeng Hu


pdf bib
Pre-training and Fine-tuning Neural Topic Model: A Simple yet Effective Approach to Incorporating External Knowledge
Linhai Zhang | Xuemeng Hu | Boyu Wang | Deyu Zhou | Qian-Wen Zhang | Yunbo Cao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent years have witnessed growing interests in incorporating external knowledge such as pre-trained word embeddings (PWEs) or pre-trained language models (PLMs) into neural topic modeling. However, we found that employing PWEs and PLMs for topic modeling only achieved limited performance improvements but with huge computational overhead. In this paper, we propose a novel strategy to incorporate external knowledge into neural topic modeling where the neural topic model is pre-trained on a large corpus and then fine-tuned on the target dataset. Experiments have been conducted on three datasets and results show that the proposed approach significantly outperforms both current state-of-the-art neural topic models and some topic modeling approaches enhanced with PWEs or PLMs. Moreover, further study shows that the proposed approach greatly reduces the need for the huge size of training data.


pdf bib
Neural Topic Modeling with Bidirectional Adversarial Training
Rui Wang | Xuemeng Hu | Deyu Zhou | Yulan He | Yuxuan Xiong | Chenchen Ye | Haiyang Xu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recent years have witnessed a surge of interests of using neural topic models for automatic topic extraction from text, since they avoid the complicated mathematical derivations for model inference as in traditional topic models such as Latent Dirichlet Allocation (LDA). However, these models either typically assume improper prior (e.g. Gaussian or Logistic Normal) over latent topic space or could not infer topic distribution for a given document. To address these limitations, we propose a neural topic modeling approach, called Bidirectional Adversarial Topic (BAT) model, which represents the first attempt of applying bidirectional adversarial training for neural topic modeling. The proposed BAT builds a two-way projection between the document-topic distribution and the document-word distribution. It uses a generator to capture the semantic patterns from texts and an encoder for topic inference. Furthermore, to incorporate word relatedness information, the Bidirectional Adversarial Topic model with Gaussian (Gaussian-BAT) is extended from BAT. To verify the effectiveness of BAT and Gaussian-BAT, three benchmark corpora are used in our experiments. The experimental results show that BAT and Gaussian-BAT obtain more coherent topics, outperforming several competitive baselines. Moreover, when performing text clustering based on the extracted topics, our models outperform all the baselines, with more significant improvements achieved by Gaussian-BAT where an increase of near 6% is observed in accuracy.

pdf bib
Neural Topic Modeling by Incorporating Document Relationship Graph
Deyu Zhou | Xuemeng Hu | Rui Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Graph Neural Networks (GNNs) that capture the relationships between graph nodes via message passing have been a hot research direction in the natural language processing community. In this paper, we propose Graph Topic Model (GTM), a GNN based neural topic model that represents a corpus as a document relationship graph. Documents and words in the corpus become nodes in the graph and are connected based on document-word co-occurrences. By introducing the graph structure, the relationships between documents are established through their shared words and thus the topical representation of a document is enriched by aggregating information from its neighboring nodes using graph convolution. Extensive experiments on three datasets were conducted and the results demonstrate the effectiveness of the proposed approach.

pdf bib
Neural Topic Modeling with Cycle-Consistent Adversarial Training
Xuemeng Hu | Rui Wang | Deyu Zhou | Yuxuan Xiong
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Advances on deep generative models have attracted significant research interest in neural topic modeling. The recently proposed Adversarial-neural Topic Model models topics with an adversarially trained generator network and employs Dirichlet prior to capture the semantic patterns in latent topics. It is effective in discovering coherent topics but unable to infer topic distributions for given documents or utilize available document labels. To overcome such limitations, we propose Topic Modeling with Cycle-consistent Adversarial Training (ToMCAT) and its supervised version sToMCAT. ToMCAT employs a generator network to interpret topics and an encoder network to infer document topics. Adversarial training and cycle-consistent constraints are used to encourage the generator and the encoder to produce realistic samples that coordinate with each other. sToMCAT extends ToMCAT by incorporating document labels into the topic modeling process to help discover more coherent topics. The effectiveness of the proposed models is evaluated on unsupervised/supervised topic modeling and text classification. The experimental results show that our models can produce both coherent and informative topics, outperforming a number of competitive baselines.