Xueyao Zhang


2024

pdf bib
MUCH: A Multimodal Corpus Construction for Conversational Humor Recognition Based on Chinese Sitcom
Hongyu Guo | Wenbo Shang | Xueyao Zhang | Shubo Zhang | Xu Han | Binyang Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Conversational humor is the key to capturing dialogue semantics and dialogue comprehension, which is usually generated in multiple modalities, such as linguistic rhetoric (textual modality), exaggerated facial expressions or movements (visual modality), and quirky intonation (acoustic modality). However, existing multimodal corpora for conversation humor are coarse-grained, and the modality is insufficient to support the conversational humor recognition task. This paper designed an annotation scheme for multimodal humor datasets, and constructed a corpus based on a Chinese sitcom for conversational humor recognition, named MUCH. The MUCH corpus consists of 34,804 utterances in total, and 7,079 of them are humorous. We employed both unimodal and multimodal methods to test our MUCH corpus. Experimental results showed that the multimodal approach could achieve 75.94% in terms of F1-score and surpassed the performance of most unimodal methods, which demonstrated that the MUCH corpus was effective for multimodal humor recognition tasks.

pdf bib
UIR-ISC at SemEval-2024 Task 3: Textual Emotion-Cause Pair Extraction in Conversations
Hongyu Guo | Xueyao Zhang | Yiyang Chen | Lin Deng | Binyang Li
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

The goal of Emotion Cause Pair Extraction (ECPE) is to explore the causes of emotion changes and what causes a certain emotion. This paper proposes a three-step learning approach for the task of Textual Emotion-Cause Pair Extraction in Conversations in SemEval-2024 Task 3, named ECSP. We firstly perform data preprocessing operations on the original dataset to construct negative samples. Secondly, we use a pre-trained model to construct token sequence representations with contextual information to obtain emotion prediction. Thirdly, we regard the textual emotion-cause pair extraction task as a machine reading comprehension task, and fine-tune two pre-trained models, RoBERTa and SpanBERT. Our results have achieved good results in the official rankings, ranking 3rd under the strict match with the Strict F1-score of 15.18%, which further shows that our system has a robust performance.

2022

pdf bib
Zoom Out and Observe: News Environment Perception for Fake News Detection
Qiang Sheng | Juan Cao | Xueyao Zhang | Rundong Li | Danding Wang | Yongchun Zhu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fake news detection is crucial for preventing the dissemination of misinformation on social media. To differentiate fake news from real ones, existing methods observe the language patterns of the news post and “zoom in” to verify its content with knowledge sources or check its readers’ replies. However, these methods neglect the information in the external news environment where a fake news post is created and disseminated. The news environment represents recent mainstream media opinion and public attention, which is an important inspiration of fake news fabrication because fake news is often designed to ride the wave of popular events and catch public attention with unexpected novel content for greater exposure and spread. To capture the environmental signals of news posts, we “zoom out” to observe the news environment and propose the News Environment Perception Framework (NEP). For each post, we construct its macro and micro news environment from recent mainstream news. Then we design a popularity-oriented and a novelty-oriented module to perceive useful signals and further assist final prediction. Experiments on our newly built datasets show that the NEP can efficiently improve the performance of basic fake news detectors.

2021

pdf bib
Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting Previously Fact-Checked Claims
Qiang Sheng | Juan Cao | Xueyao Zhang | Xirong Li | Lei Zhong
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

False claims that have been previously fact-checked can still spread on social media. To mitigate their continual spread, detecting previously fact-checked claims is indispensable. Given a claim, existing works focus on providing evidence for detection by reranking candidate fact-checking articles (FC-articles) retrieved by BM25. However, these performances may be limited because they ignore the following characteristics of FC-articles: (1) claims are often quoted to describe the checked events, providing lexical information besides semantics; (2) sentence templates to introduce or debunk claims are common across articles, providing pattern information. Models that ignore the two aspects only leverage semantic relevance and may be misled by sentences that describe similar but irrelevant events. In this paper, we propose a novel reranker, MTM (Memory-enhanced Transformers for Matching) to rank FC-articles using key sentences selected with event (lexical and semantic) and pattern information. For event information, we propose a ROUGE-guided Transformer which is finetuned with regression of ROUGE. For pattern information, we generate pattern vectors for matching with sentences. By fusing event and pattern information, we select key sentences to represent an article and then predict if the article fact-checks the given claim using the claim, key sentences, and patterns. Experiments on two real-world datasets show that MTM outperforms existing methods. Human evaluation proves that MTM can capture key sentences for explanations.