Xujiang Zhao


2023

pdf bib
Open-ended Commonsense Reasoning with Unrestricted Answer Candidates
Chen Ling | Xuchao Zhang | Xujiang Zhao | Yanchi Liu | Wei Cheng | Mika Oishi | Takao Osaki | Katsushi Matsuda | Haifeng Chen | Liang Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023

Open-ended Commonsense Reasoning is defined as solving a commonsense question without providing 1) a short list of answer candidates and 2) a pre-defined answer scope. Conventional ways of formulating the commonsense question into a question-answering form or utilizing external knowledge to learn retrieval-based methods are less applicable in the open-ended setting due to an inherent challenge. Without pre-defining an answer scope or a few candidates, open-ended commonsense reasoning entails predicting answers by searching over an extremely large searching space. Moreover, most questions require implicit multi-hop reasoning, which presents even more challenges to our problem. In this work, we leverage pre-trained language models to iteratively retrieve reasoning paths on the external knowledge base, which does not require task-specific supervision. The reasoning paths can help to identify the most precise answer to the commonsense question. We conduct experiments on two commonsense benchmark datasets. Compared to other approaches, our proposed method achieves better performance both quantitatively and qualitatively.

2021

pdf bib
Boosting Cross-Lingual Transfer via Self-Learning with Uncertainty Estimation
Liyan Xu | Xuchao Zhang | Xujiang Zhao | Haifeng Chen | Feng Chen | Jinho D. Choi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent multilingual pre-trained language models have achieved remarkable zero-shot performance, where the model is only finetuned on one source language and directly evaluated on target languages. In this work, we propose a self-learning framework that further utilizes unlabeled data of target languages, combined with uncertainty estimation in the process to select high-quality silver labels. Three different uncertainties are adapted and analyzed specifically for the cross lingual transfer: Language Heteroscedastic/Homoscedastic Uncertainty (LEU/LOU), Evidential Uncertainty (EVI). We evaluate our framework with uncertainties on two cross-lingual tasks including Named Entity Recognition (NER) and Natural Language Inference (NLI) covering 40 languages in total, which outperforms the baselines significantly by 10 F1 for NER on average and 2.5 accuracy for NLI.