Entity Linking (EL) is the process of associating ambiguous textual mentions to specific entities in a knowledge base.Traditional EL methods heavily rely on large datasets to enhance their performance, a dependency that becomes problematic in the context of few-shot entity linking, where only a limited number of examples are available for training. To address this challenge, we present OneNet, an innovative framework that utilizes the few-shot learning capabilities of Large Language Models (LLMs) without the need for fine-tuning. To the best of our knowledge, this marks a pioneering approach to applying LLMs to few-shot entity linking tasks. OneNet is structured around three key components prompted by LLMs: (1) an entity reduction processor that simplifies inputs by summarizing and filtering out irrelevant entities, (2) a dual-perspective entity linker that combines contextual cues and prior knowledge for precise entity linking, and (3) an entity consensus judger that employs a unique consistency algorithm to alleviate the hallucination in the entity linking reasoning.Comprehensive evaluations across seven benchmark datasets reveal that OneNet outperforms current state-of-the-art entity linking methods.
The rapid increase in multimedia data has spurred advancements in Multimodal Summarization with Multimodal Output (MSMO), which aims to produce a multimodal summary that integrates both text and relevant images. The inherent heterogeneity of content within multimodal inputs and outputs presents a significant challenge to the execution of MSMO. Traditional approaches typically adopt a holistic perspective on coarse image-text data or individual visual objects, overlooking the essential connections between objects and the entities they represent. To integrate the fine-grained entity knowledge, we propose an Entity-Guided Multimodal Summarization model (EGMS). Our model, building on BART, utilizes dual multimodal encoders with shared weights to process text-image and entity-image information concurrently. A gating mechanism then combines visual data for enhanced textual summary generation, while image selection is refined through knowledge distillation from a pre-trained vision-language model. Extensive experiments on public MSMO dataset validate the superiority of the EGMS method, which also prove the necessity to incorporate entity information into MSMO problem.
Entity Alignment, which aims to identify equivalent entities from various Knowledge Graphs (KGs), is a fundamental and crucial task in knowledge graph fusion. Existing methods typically use triple or neighbor information to represent entities, and then align those entities using similarity matching. Most of them, however, fail to account for the heterogeneity among KGs and the distinction between KG entities and relations. To better solve these problems, we propose a Relation-gated Heterogeneous Graph Network (RHGN) for entity alignment. Specifically, RHGN contains a relation-gated convolutional layer to distinguish relations and entities in the KG. In addition, RHGN adopts a cross-graph embedding exchange module and a soft relation alignment module to address the neighbor heterogeneity and relation heterogeneity between different KGs, respectively. Extensive experiments on four benchmark datasets demonstrate that RHGN is superior to existing state-of-the-art entity alignment methods.