Xulang Zhang


2024

pdf bib
SenticVec: Toward Robust and Human-Centric Neurosymbolic Sentiment Analysis
Xulang Zhang | Rui Mao | Erik Cambria
Findings of the Association for Computational Linguistics: ACL 2024

The success of state-of-the-art Natural Language Processing (NLP) systems heavily depends on deep neural networks, which excel in various tasks through strong data fitting and latent feature modeling abilities. However, certain challenges linked to deep neural networks and supervised deep learning deserve considerations, e.g., extensive computing resources, knowledge forgetting, etc. Previous research attempted to tackle these challenges individually through irrelative techniques. However, they do not instigate fundamental shifts in the learning paradigm. In this work, we propose a novel neurosymbolic method for sentiment analysis to tackle these issues. We also propose a novel sentiment-pragmatic knowledge base that places emphasis on human subjectivity within varying domain annotations. We conducted extensive experiments to show that our neurosymbolic framework for sentiment analysis stands out for its lightweight nature, robustness across domains and languages, efficient few-shot training, and rapid convergence.

pdf bib
Vanessa: Visual Connotation and Aesthetic Attributes Understanding Network for Multimodal Aspect-based Sentiment Analysis
Luwei Xiao | Rui Mao | Xulang Zhang | Liang He | Erik Cambria
Findings of the Association for Computational Linguistics: EMNLP 2024

Prevailing research concentrates on superficial features or descriptions of images, revealing a significant gap in the systematic exploration of their connotative and aesthetic attributes. Furthermore, the use of cross-modal relation detection modules to eliminate noise from comprehensive image representations leads to the omission of subtle contextual information. In this paper, we present a Visual Connotation and Aesthetic Attributes Understanding Network (Vanessa) for Multimodal Aspect-based Sentiment Analysis. Concretely, Vanessa incorporates a Multi-Aesthetic Attributes Aggregation (MA3) module that models intra- and inter-dependencies among bi-modal representations as well as emotion-laden aesthetic attributes. Moreover, we devise a self-supervised contrastive learning framework to explore the pairwise relevance between images and text via the Gaussian distribution of their CLIP scores. By dynamically clustering and merging multi-modal tokens, Vanessa effectively captures both implicit and explicit sentimental cues. Extensive experiments on widely adopted two benchmarks verify Vanessa’s effectiveness.

pdf bib
GPTEval: A Survey on Assessments of ChatGPT and GPT-4
Rui Mao | Guanyi Chen | Xulang Zhang | Frank Guerin | Erik Cambria
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The emergence of ChatGPT has generated much speculation in the press about its potential to disrupt social and economic systems. Its astonishing language ability has aroused strong curiosity among scholars about its performance in different domains. There have been many studies evaluating the ability of ChatGPT and GPT-4 in different tasks and disciplines. However, a comprehensive review summarizing the collective assessment findings is lacking. The objective of this survey is to thoroughly analyze prior assessments of ChatGPT and GPT-4, focusing on its language and reasoning abilities, scientific knowledge, and ethical considerations. Furthermore, an examination of the existing evaluation methods is conducted, offering several recommendations for future research.

2023

pdf bib
Neuro-Symbolic Sentiment Analysis with Dynamic Word Sense Disambiguation
Xulang Zhang | Rui Mao | Kai He | Erik Cambria
Findings of the Association for Computational Linguistics: EMNLP 2023

Sentiment analysis is a task that highly depends on the understanding of word senses. Traditional neural network models are black boxes that represent word senses as vectors that are uninterpretable for humans. On the other hand, the application of Word Sense Disambiguation (WSD) systems in downstream tasks poses challenges regarding i) which words need to be disambiguated, and ii) how to model explicit word senses into easily understandable terms for a downstream model. This work proposes a neurosymbolic framework that incorporates WSD by identifying and paraphrasing ambiguous words to improve the accuracy of sentiment predictions. The framework allows us to understand which words are paraphrased into which semantically unequivocal words, thus enabling a downstream task model to gain both accuracy and interpretability. To better fine-tune a lexical substitution model for WSD on a downstream task without ground-truth word sense labels, we leverage dynamic rewarding to jointly train sentiment analysis and lexical substitution models. Our framework proves to effectively improve the performance of sentiment analysis on corpora from different domains.