Xun Wang


2024

pdf bib
Watch Every Step! LLM Agent Learning via Iterative Step-level Process Refinement
Weimin Xiong | Yifan Song | Xiutian Zhao | Wenhao Wu | Xun Wang | Ke Wang | Cheng Li | Wei Peng | Sujian Li
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language model agents have exhibited exceptional performance across a range of complex interactive tasks. Recent approaches have utilized tuning with expert trajectories to enhance agent performance, yet they primarily concentrate on outcome rewards, which may lead to errors or suboptimal actions due to the absence of process supervision signals. In this paper, we introduce the **I**terative step-level **P**rocess **R**efinement **(IPR)** framework, which provides detailed step-by-step guidance to enhance agent training. Specifically, we adopt the Monte Carlo method to estimate step-level rewards. During each iteration, the agent explores along the expert trajectory and generates new actions. These actions are then evaluated against the corresponding step of expert trajectory using step-level rewards. Such comparison helps identify discrepancies, yielding contrastive action pairs that serve as training data for the agent. Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines. Moreover, our analytical finds highlight the effectiveness of IPR in augmenting action efficiency and its applicability to diverse models.

pdf bib
SecCoder: Towards Generalizable and Robust Secure Code Generation
Boyu Zhang | Tianyu Du | Junkai Tong | Xuhong Zhang | Kingsum Chow | Sheng Cheng | Xun Wang | Jianwei Yin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

After large models (LMs) have gained widespread acceptance in code-related tasks, their superior generative capacity has greatly promoted the application of the code LM. Nevertheless, the security of the generated code has raised attention to its potential damage. Existing secure code generation methods have limited generalizability to unseen test cases and poor robustness against the attacked model, leading to safety failures in code generation. In this paper, we propose a generalizable and robust secure code generation method SecCoder by using in-context learning (ICL) and the safe demonstration. The dense retriever is also used to select the most helpful demonstration to maximize the improvement of the generated code’s security. Experimental results show the superior generalizability of the proposed model SecCoder compared to the current secure code generation method, achieving a significant security improvement of an average of 7.20% on unseen test cases. The results also show the better robustness of SecCoder compared to the current attacked code LM, achieving a significant security improvement of an average of 7.74%. Our analysis indicates that SecCoder enhances the security of LMs in generating code, and it is more generalizable and robust.

pdf bib
NoteChat: A Dataset of Synthetic Patient-Physician Conversations Conditioned on Clinical Notes
Junda Wang | Zonghai Yao | Zhichao Yang | Huixue Zhou | Rumeng Li | Xun Wang | Yucheng Xu | Hong Yu
Findings of the Association for Computational Linguistics: ACL 2024

We introduce NoteChat, a novel cooperative multi-agent framework leveraging Large Language Models (LLMs) to generate patient-physician dialogues. NoteChat embodies the principle that an ensemble of role-specific LLMs, through structured role-play and strategic prompting, can perform their assigned roles more effectively. The synergy among these role-playing LLMs results in a cohesive and efficient dialogue generation. Evaluation on MTS-dialogue, a benchmark dataset for patient-physician dialogues-note pairs, shows that models trained with the augmented synthetic patient-physician dialogues by NoteChat outperforms other state-of-the-art models for generating clinical notes. Our comprehensive automatic and human evaluation demonstrates that NoteChat substantially surpasses state-of-the-art models like ChatGPT and GPT-4 up to 22.78% by domain experts in generating superior synthetic patient-physician dialogues based on clinical notes. NoteChat has the potential to engage patients directly and help clinical documentation, a leading cause of physician burnout.

pdf bib
SCALE: Synergized Collaboration of Asymmetric Language Translation Engines
Xin Cheng | Xun Wang | Tao Ge | Si-Qing Chen | Furu Wei | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2024

In this paper, we introduce SCALE, a collaborative framework that connects a compact Specialized Translation Model (STM) and a general-purpose Large Language Model (LLM) as one unified translation engine. By introducing translation from STM into the triplet in-context demonstrations, SCALE unlocks refinement and pivoting ability of LLM, thus 1) mitigating language bias of LLMs and parallel data bias of STMs, 2) enhancing LLM speciality without sacrificing generality, and 3) facilitating continual learning in a LLM-tuning-free way.Our comprehensive experiments show that SCALE significantly outperforms both LLMs (GPT-4, GPT-3.5) and supervised models (NLLB, M2M) in either high-resource or challenging low-resource settings. Moreover SCALE shows great scalability by only updating the lightweight STM and witness consistent system improvement, an averaged 4 BLEURT score across 4 languages without tuning LLM. Interestingly, SCALE could also effectively exploit the existing language bias of LLMs by using an English-centric STM as a pivot to conduct translation between any language pairs, outperforming GPT-4 by an average of 6 COMET points across eight translation directions. Furthermore we provide an in-depth analysis of SCALE’s robustness, translation characteristics, latency costs and inherent language bias, providing solid foundation for future studies exploring the potential synergy between LLMs and more specialized models.

pdf bib
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection
Sunjae Kwon | Xun Wang | Weisong Liu | Emily Druhl | Minhee Sung | Joel Reisman | Wenjun Li | Robert Kerns | William Becker | Hong Yu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Opioid related aberrant behaviors (ORABs) present novel risk factors for opioid overdose. This paper introduces a novel biomedical natural language processing benchmark dataset named ODD, for ORAB Detection Dataset. ODD is an expert-annotated dataset designed to identify ORABs from patients’ EHR notes and classify them into nine categories; 1) Confirmed Aberrant Behavior, 2) Suggested Aberrant Behavior, 3) Opioids, 4) Indication, 5) Diagnosed opioid dependency, 6) Benzodiazepines, 7) Medication Changes, 8) Central Nervous System-related, and 9) Social Determinants of Health. We explored two state-of-the-art natural language processing models (fine-tuning and prompt-tuning approaches) to identify ORAB. Experimental results show that the prompt-tuning models outperformed the fine-tuning models in most categories and the gains were especially higher among uncommon categories (Suggested Aberrant Behavior, Confirmed Aberrant Behaviors, Diagnosed Opioid Dependence, and Medication Change). Although the best model achieved the highest 88.17% on macro average area under precision recall curve, uncommon classes still have a large room for performance improvement. ODD is publicly available.

pdf bib
LlamaCare: An Instruction Fine-Tuned Large Language Model for Clinical NLP
Rumeng Li | Xun Wang | Hong Yu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have shown remarkable abilities in generating natural texts for various tasks across different domains. However, applying LLMs to clinical settings still poses significant challenges, as it requires specialized knowledge, vocabulary, as well as reliability. In this work, we propose a novel method of instruction fine-tuning for adapting LLMs to the clinical domain, which leverages the instruction-following capabilities of LLMs and the availability of diverse real-world data sources. We generate instructions, inputs, and outputs covering a wide spectrum of clinical services, from primary cares to nursing, radiology, physician, and social work, and use them to fine-tune LLMs. We evaluated the fine-tuned LLM, LlamaCare, on various clinical tasks, such as generating discharge summaries, predicting mortality and length of stay, and more. Using both automatic and human metrics, we demonstrated that LlamaCare surpasses other LLM baselines in predicting clinical outcomes and producing more accurate and coherent clinical texts. We also discuss the challenges and limitations of LLMs that need to be addressed before they can be widely adopted in clinical settings.

2023

pdf bib
Smart Word Suggestions for Writing Assistance
Chenshuo Wang | Shaoguang Mao | Tao Ge | Wenshan Wu | Xun Wang | Yan Xia | Jonathan Tien | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Enhancing word usage is a desired feature for writing assistance. To further advance research in this area, this paper introduces “Smart Word Suggestions” (SWS) task and benchmark. Unlike other works, SWS emphasizes end-to-end evaluation and presents a more realistic writing assistance scenario. This task involves identifying words or phrases that require improvement and providing substitution suggestions. The benchmark includes human-labeled data for testing, a large distantly supervised dataset for training, and the framework for evaluation. The test data includes 1,000 sentences written by English learners, accompanied by over 16,000 substitution suggestions annotated by 10 native speakers. The training dataset comprises over 3.7 million sentences and 12.7 million suggestions generated through rules. Our experiments with seven baselines demonstrate that SWS is a challenging task. Based on experimental analysis, we suggest potential directions for future research on SWS. The dataset and related codes will be available for research purposes.

pdf bib
Two Directions for Clinical Data Generation with Large Language Models: Data-to-Label and Label-to-Data
Rumeng Li | Xun Wang | Hong Yu
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) can generate natural language texts for various domains and tasks, but their potential for clinical text mining, a domain with scarce, sensitive, and imbalanced medical data, is under-explored. We investigate whether LLMs can augment clinical data for detecting Alzheimer’s Disease (AD)-related signs and symptoms from electronic health records (EHRs), a challenging task that requires high expertise. We create a novel pragmatic taxonomy for AD sign and symptom progression based on expert knowledge and generated three datasets: (1) a gold dataset annotated by human experts on longitudinal EHRs of AD patients; (2) a silver dataset created by the data-to-label method, which labels sentences from a public EHR collection with AD-related signs and symptoms; and (3) a bronze dataset created by the label-to-data method which generates sentences with AD-related signs and symptoms based on the label definition. We train a system to detect AD-related signs and symptoms from EHRs. We find that the silver and bronze datasets improves the system performance, outperforming the system using only the gold dataset. This shows that LLMs can generate synthetic clinical data for a complex task by incorporating expert knowledge, and our label-to-data method can produce datasets that are free of sensitive information, while maintaining acceptable quality.

2016

pdf bib
Exploring Text Links for Coherent Multi-Document Summarization
Xun Wang | Masaaki Nishino | Tsutomu Hirao | Katsuhito Sudoh | Masaaki Nagata
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Summarization aims to represent source documents by a shortened passage. Existing methods focus on the extraction of key information, but often neglect coherence. Hence the generated summaries suffer from a lack of readability. To address this problem, we have developed a graph-based method by exploring the links between text to produce coherent summaries. Our approach involves finding a sequence of sentences that best represent the key information in a coherent way. In contrast to the previous methods that focus only on salience, the proposed method addresses both coherence and informativeness based on textual linkages. We conduct experiments on the DUC2004 summarization task data set. A performance comparison reveals that the summaries generated by the proposed system achieve comparable results in terms of the ROUGE metric, and show improvements in readability by human evaluation.

2015

pdf bib
Empty Category Detection With Joint Context-Label Embeddings
Xun Wang | Katsuhito Sudoh | Masaaki Nagata
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

2012

pdf bib
Update Summarization using a Multi-level Hierarchical Dirichlet Process Model
Jiwei Li | Sujian Li | Xun Wang | Ye Tian | Baobao Chang
Proceedings of COLING 2012

pdf bib
Implicit Discourse Relation Recognition by Selecting Typical Training Examples
Xun Wang | Sujian Li | Jiwei Li | Wenjie Li
Proceedings of COLING 2012