Xuyi Chen


2021

pdf bib
abcbpc at SemEval-2021 Task 7: ERNIE-based Multi-task Model for Detecting and Rating Humor and Offense
Chao Pang | Xiaoran Fan | Weiyue Su | Xuyi Chen | Shuohuan Wang | Jiaxiang Liu | Xuan Ouyang | Shikun Feng | Yu Sun
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our system participated in Task 7 of SemEval-2021: Detecting and Rating Humor and Offense. The task is designed to detect and score humor and offense which are influenced by subjective factors. In order to obtain semantic information from a large amount of unlabeled data, we applied unsupervised pre-trained language models. By conducting research and experiments, we found that the ERNIE 2.0 and DeBERTa pre-trained models achieved impressive performance in various subtasks. Therefore, we applied the above pre-trained models to fine-tune the downstream neural network. In the process of fine-tuning the model, we adopted multi-task training strategy and ensemble learning method. Based on the above strategy and method, we achieved RMSE of 0.4959 for subtask 1b, and finally won the first place.

2020

pdf bib
Kk2018 at SemEval-2020 Task 9: Adversarial Training for Code-Mixing Sentiment Classification
Jiaxiang Liu | Xuyi Chen | Shikun Feng | Shuohuan Wang | Xuan Ouyang | Yu Sun | Zhengjie Huang | Weiyue Su
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Code switching is a linguistic phenomenon which may occur within a multilingual setting where speakers share more than one language. With the increasing communication between groups with different languages, this phenomenon is more and more popular. However, there are little research and data in this area, especially in code-mixing sentiment classification. In this work, the domain transfer learning from state-of-the-art uni-language model ERNIE is tested on the code-mixing dataset, and surprisingly, a strong baseline is achieved. And further more, the adversarial training with a multi-lingual model is used to achieved 1st place of SemEval-2020 Task9 Hindi-English sentiment classification competition.

pdf bib
ERNIE at SemEval-2020 Task 10: Learning Word Emphasis Selection by Pre-trained Language Model
Zhengjie Huang | Shikun Feng | Weiyue Su | Xuyi Chen | Shuohuan Wang | Jiaxiang Liu | Xuan Ouyang | Yu Sun
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes the system designed by ERNIE Team which achieved the first place in SemEval-2020 Task 10: Emphasis Selection For Written Text in Visual Media. Given a sentence, we are asked to find out the most important words as the suggestion for automated design. We leverage the unsupervised pre-training model and finetune these models on our task. After our investigation, we found that the following models achieved an excellent performance in this task: ERNIE 2.0, XLM-ROBERTA, ROBERTA and ALBERT. We combine a pointwise regression loss and a pairwise ranking loss which is more close to the final Match m metric to finetune our models. And we also find that additional feature engineering and data augmentation can help improve the performance. Our best model achieves the highest score of 0.823 and ranks first for all kinds of metrics.