Xiaorong Wang


2025

pdf bib
LLM×MapReduce-V3: Enabling Interactive In-Depth Survey Generation through a MCP-Driven Hierarchically Modular Agent System
Yu Chao | Siyu Lin | Xiaorong Wang | Zhu Zhang | Zihan Zhou | Haoyu Wang | Shuo Wang | Jie Zhou | Zhiyuan Liu | Maosong Sun
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We introduce LLM×MapReduce-V3, a hierarchically modular agent system designed for long-form survey generation. Building on the prior work, LLM×MapReduce-V2, this version incorporates a multi-agent architecture where individual functional components, such as skeleton initialization, digest construction, and skeleton refinement, are implemented as independent model-context-protocol (MCP) servers. These atomic servers can be aggregated into higher-level servers, creating a hierarchically structured system. A high-level planner agent dynamically orchestrates the workflow by selecting appropriate modules based on their MCP tool descriptions and the execution history. This modular decomposition facilitates human-in-the-loop intervention, affording users greater control and customization over the research process. Through a multi-turn interaction, the system precisely captures the intended research perspectives to generate a comprehensive skeleton, which is then developed into an in-depth survey. Human evaluations demonstrate that our system surpasses representative baselines in both content depth and length, highlighting the strength of MCP-based modular planning. Demo, video and code are available at https://github.com/thunlp/LLMxMapReduce.

2023

pdf bib
Energy and Carbon Considerations of Fine-Tuning BERT
Xiaorong Wang | Clara Na | Emma Strubell | Sorelle Friedler | Sasha Luccioni
Findings of the Association for Computational Linguistics: EMNLP 2023

Despite the popularity of the pre-train then fine-tune paradigm in the NLP community, existing work quantifying energy costs and associated carbon emissions has largely focused on language model pre-training. Although a single pre-training run draws substantially more energy than fine-tuning, fine-tuning is performed more frequently by many more individual actors, and thus must be accounted for when considering the energy and carbon footprint of NLP. In order to better characterize the role of fine-tuning in the landscape of energy and carbon emissions in NLP, we perform a careful empirical study of the computational costs of fine-tuning across tasks, datasets, hardware infrastructure and measurement modalities. Our experimental results allow us to place fine-tuning energy and carbon costs into perspective with respect to pre-training and inference, and outline recommendations to NLP researchers and practitioners who wish to improve their fine-tuning energy efficiency.