Xie Zhifei


2025

pdf bib
Audio-Reasoner: Improving Reasoning Capability in Large Audio Language Models
Xie Zhifei | Mingbao Lin | Zihang Liu | Pengcheng Wu | Shuicheng Yan | Chunyan Miao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Recent advancements in multimodal reasoning overlook the audio modality. We introduce Audio-Reasoner, a large-scale audio language model for deep reasoning. We meticulously curated a large-scale and diverse multi-task audio dataset with simple annotations. Then, we leverage closed-source models to conduct secondary labeling, QA generation, along with structured COT process. These datasets together form a high-quality reasoning dataset with 1.2 million reasoning-rich samples, which we name CoTA. Following inference scaling principles, we train Audio-Reasoner on CoTA, enabling it to achieve great logical capabilities in audio reasoning. Experiments show state-of-the-art performance across key benchmarks, including MMAU-mini (+25.42%), AIR-Bench chat/foundation (+14.57%/+10.13%), and MELD (+8.01%). Our findings stress the core of structured CoT training in advancing audio reasoning. The model, dataset, and code are open-sourced at [https://github.com/xzf-thu/Audio-Reasoner](https://github.com/xzf-thu/Audio-Reasoner) or [https://huggingface.co/datasets/zhifeixie/Audio-Reasoner-CoTA](https://huggingface.co/datasets/zhifeixie/Audio-Reasoner-CoTA).