2025
pdf
bib
abs
Neuron Empirical Gradient: Discovering and Quantifying Neurons’ Global Linear Controllability
Xin Zhao
|
Zehui Jiang
|
Naoki Yoshinaga
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
While feed-forward neurons in pre-trained language models (PLMs) can encode knowledge, past research targeted a small subset of neurons that heavily influence outputs.This leaves the broader role of neuron activations unclear, limiting progress in areas like knowledge editing.We uncover a global linear relationship between neuron activations and outputs using neuron interventions on a knowledge probing dataset.The gradient of this linear relationship, which we call the **neuron empirical gradient (NEG)**, captures how changes in activations affect predictions.To compute NEG efficiently, we propose **NeurGrad**, enabling large-scale analysis of neuron behavior in PLMs.We also show that NEG effectively captures language skills across diverse prompts through skill neuron probing. Experiments on **MCEval8k**, a multi-genre multiple-choice knowledge benchmark, support NEG’s ability to represent model knowledge. Further analysis highlights the key properties of NEG-based skill representation: efficiency, robustness, flexibility, and interdependency.Code and data are released.
pdf
bib
abs
RMoA: Optimizing Mixture-of-Agents through Diversity Maximization and Residual Compensation
Zhentao Xie
|
Chengcheng Han
|
Jinxin Shi
|
Wenjun Cui
|
Xin Zhao
|
Xingjiao Wu
|
Jiabao Zhao
Findings of the Association for Computational Linguistics: ACL 2025
Although multi-agent systems based on large language models show strong capabilities on multiple tasks, they are still limited by high computational overhead, information loss, and robustness. Inspired by ResNet’s residual learning, we propose Residual Mixture-of-Agents (RMoA), integrating residual connections to optimize efficiency and reliability. To maximize information utilization from model responses while minimizing computational costs, we innovatively design an embedding-based diversity selection mechanism that greedily selects responses via vector similarity. Furthermore, to mitigate iterative information degradation, we introduce a Residual Extraction Agent to preserve cross-layer incremental information by capturing inter-layer response differences, coupled with a Residual Aggregation Agent for hierarchical information integration. Additionally, we propose an adaptive termination mechanism that dynamically halts processing based on residual convergence, further improving inference efficiency. RMoA achieves state-of-the-art performance on the benchmarks of across alignment, mathematical reasoning, code generation, and multitasking understanding, while significantly reducing computational overhead. Code is available at https://github.com/mindhunter01/RMoA.
pdf
bib
abs
Watermarking with Low-Entropy POS-Guided Token Partitioning and Z-Score-Driven Dynamic Bias for Large Language Models
He Li
|
Xiaojun Chen
|
Zhendong Zhao
|
Yunfei Yang
|
Xin Zhao
|
Jingcheng He
Findings of the Association for Computational Linguistics: EMNLP 2025
Texts generated by large language models (LLMs) are increasingly widespread online. Due to the lack of effective attribution mechanisms, the enforcement of copyright and the prevention of misuse remain significant challenges in the context of LLM-generated content. LLMs watermark emerges as a crucial technology to trace the source of AI-generated content. However, most existing watermarking methods reduce the fidelity of semantics. To address this issue, this paper introduces a novel watermarking framework. To enhance the fidelity of semantics, we propose low-entropy POS-guided token partitioning mechanism and z-score-driven dynamic bias mechanism. Moreover, to enhance the robustness against potential bias sparsity exploitation attack, we propose a relative position encoding (RPE) mechanism, which can uniformly distribute bias in the generated text. Evaluated across 6 baselines, 4 tasks, and 5 LLMs under 8 attacks, compared to the KGW, our watermark improves semantic fidelity by 24.53% (RC-PPL) and robustness by 3.75% (F1). Our code is publicly available, facilitating reproducibility in LLM watermarking research.
pdf
bib
abs
Leveraging High-Resource English Corpora for Cross-lingual Domain Adaptation in Low-Resource Japanese Medicine via Continued Pre-training
Kazuma Kobayashi
|
Zhen Wan
|
Fei Cheng
|
Yuma Tsuta
|
Xin Zhao
|
Junfeng Jiang
|
Jiahao Huang
|
Zhiyi Huang
|
Yusuke Oda
|
Rio Yokota
|
Yuki Arase
|
Daisuke Kawahara
|
Akiko Aizawa
|
Sadao Kurohashi
Findings of the Association for Computational Linguistics: EMNLP 2025
Limited low-resource language corpora in professional domains like medicine hinder cross-lingual domain adaptation of pre-trained large language models (PLMs). While abundant English medical corpora could complement this scarcity, the effective mixture of English and target language, including machine-translated content, remains underexplored. We examined how linguistic features (e.g., token sizes and language proportions) affect performance on a Japanese–English medical knowledge benchmark. Through continued pre-training of a bilingual PLM on multilingual corpora with varying proportions of English and Japanese texts (both original and machine-translated), we analyzed correlations between linguistic features and fine-grained task performance. Our findings suggest a practical approach to optimizing multilingual corpora for cross-lingual domain adaptation, which requires leveraging specialized knowledge from English corpora while ensuring sufficient coverage of language-specific expressions in a target language (Japanese). Such insights will contribute to the development of multilingual models that effectively leverage English-language resources in various professional domains with low-resource languages.
2024
pdf
bib
abs
Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression
Peiyu Liu
|
Ze-Feng Gao
|
Xin Zhao
|
Yipeng Ma
|
Tao Wang
|
Ji-Rong Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Key-value (KV) caching is an important technique to accelerate the inference of large language models (LLMs), but incurs significant memory overhead. To compress the size of KV cache, existing methods often compromise precision or require extra data for calibration, limiting their practicality in LLM deployment. In this paper, we introduce DecoQuant, a novel data-free low-bit quantization technique based on tensor decomposition methods, to effectively compress KV cache. Our core idea is to adjust the outlier distribution of the original matrix by performing tensor decomposition, so that the quantization difficulties are migrated from the matrix to decomposed local tensors. Specially, we find that outliers mainly concentrate on small local tensors, while large tensors tend to have a narrower value range. Based on this finding, we propose to apply low-bit quantization to the large tensor, while maintaining high-precision representation for the small tensor. Furthermore, we utilize the proposed quantization method to compress the KV cache of LLMs to accelerate the inference, and develop an efficient dequantization kernel tailored specifically for DecoQuant. Through extensive experiments, DecoQuant demonstrates remarkable efficiency gains, showcasing up to a 75% reduction in memory footprint while maintaining comparable generation quality.
pdf
bib
abs
Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models
Tianyi Tang
|
Wenyang Luo
|
Haoyang Huang
|
Dongdong Zhang
|
Xiaolei Wang
|
Xin Zhao
|
Furu Wei
|
Ji-Rong Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.It remains a challenging problem to explain the underlying mechanisms by which LLMs process multilingual texts.In this paper, we delve into the composition of Transformer architectures in LLMs to pinpoint language-specific regions.Specially, we propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.Based on LAPE, we conduct comprehensive experiments on several representative LLMs, such as LLaMA-2, BLOOM, and Mistral. Our findings indicate that LLMs’ proficiency in processing a particular language is predominantly due to a small subset of neurons, primarily situated in the models’ top and bottom layers.Furthermore, we showcase the feasibility to “steer” the output language of LLMs by selectively activating or deactivating language-specific neurons. Our research provides important evidence to the understanding and exploration of the multilingual capabilities of LLMs.
pdf
bib
abs
Parrot: Enhancing Multi-Turn Instruction Following for Large Language Models
Yuchong Sun
|
Che Liu
|
Kun Zhou
|
Jinwen Huang
|
Ruihua Song
|
Xin Zhao
|
Fuzheng Zhang
|
Di Zhang
|
Kun Gai
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Humans often interact with large language models (LLMs) in multi-turn interaction to obtain desired answers or more information. However, most existing studies overlook the multi-turn instruction following ability of LLMs, in terms of training dataset, training method, and evaluation benchmark. In this paper, we introduce Parrot, a solution aiming to enhance multi-turn instruction following for LLMs. First, we introduce an efficient but effective method for collecting multi-turn instructions that feature human-like queries, such as anaphora and ellipsis. Second, we propose a context-aware preference optimization strategy to further enhance LLMs for complex queries in multi-turn interaction. Moreover, to quantitatively evaluate LLMs in multi-turn instruction following, we manually build a multi-turn benchmark derived from existing ones. Extensive experiments show that Parrot improves current LLMs by up to 7.2% in multi-turn instruction following. Our dataset and codes will be open-sourced to facilitate future research.
pdf
bib
abs
The Dawn After the Dark: An Empirical Study on Factuality Hallucination in Large Language Models
Junyi Li
|
Jie Chen
|
Ruiyang Ren
|
Xiaoxue Cheng
|
Xin Zhao
|
Jian-Yun Nie
|
Ji-Rong Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In the era of large language models (LLMs), hallucination (the tendency to generate factually incorrect content) poses great challenges to trustworthy and reliable deployment of LLMs in real-world applications. To tackle the hallucination, three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them (mitigation). To address these challenges, this work presents a systematic empirical study on LLM hallucinations, focused on the three aspects of hallucination detection, source and mitigation. Specially, we construct a new hallucination benchmark HaluEval 2.0, and design a simple yet effective detection method for LLM hallucinations. Furthermore, we zoom into the different training or utilization stages of LLMs and extensively analyze the potential factors that lead to the LLM hallucinations. Finally, we implement and examine a series of widely used techniques to mitigate the hallucinations in LLMs. Our work has led to several important findings to understand the hallucination origin and mitigate the hallucinations in LLMs.
pdf
bib
abs
LLMBox: A Comprehensive Library for Large Language Models
Tianyi Tang
|
Hu Yiwen
|
Bingqian Li
|
Wenyang Luo
|
ZiJing Qin
|
Haoxiang Sun
|
Jiapeng Wang
|
Shiyi Xu
|
Xiaoxue Cheng
|
Geyang Guo
|
Han Peng
|
Bowen Zheng
|
Yiru Tang
|
Yingqian Min
|
Yushuo Chen
|
Jie Chen
|
Ranchi Zhao
|
Luran Ding
|
Yuhao Wang
|
Zican Dong
|
Xia Chunxuan
|
Junyi Li
|
Kun Zhou
|
Xin Zhao
|
Ji-Rong Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
To facilitate the research on large language models (LLMs), this paper presents a comprehensive and unified library, LLMBox, to ease the development, use, and evaluation of LLMs. This library is featured with three main merits: (1) a unified data interface that supports the flexible implementation of various training strategies, (2) a comprehensive evaluation that covers extensive tasks, datasets, and models, and (3) more practical consideration, especially on user-friendliness and efficiency. With our library, users can easily reproduce existing methods, train new models, and conduct comprehensive performance comparisons. To rigorously test LLMBox, we conduct extensive experiments in a diverse coverage of evaluation settings, and experimental results demonstrate the effectiveness and efficiency of our library in supporting various implementations related to LLMs. The detailed introduction and usage guidance can be found at
https://github.com/RUCAIBox/LLMBox.
pdf
bib
abs
Diffusion-NAT: Self-Prompting Discrete Diffusion for Non-Autoregressive Text Generation
Kun Zhou
|
Yifan Li
|
Xin Zhao
|
Ji-Rong Wen
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Recently, continuous diffusion models (CDM) have been introduced into non-autoregressive (NAR) text-to-text generation. However, the discrete nature of text increases the difficulty of CDM to generate coherent and fluent texts, and also causes the incompatibility problem between CDM and advanced NLP techniques, especially the popular pre-trained language models (PLMs).To solve it, we propose Diffusion-NAT, which introduces discrete diffusion models (DDM) into NAR text-to-text generation and integrates BART to improve the performance.By revising the decoding process of BART and the typical settings of DDM, we unify the inference process of BART and the denoising process of DDM into the same NAR masked tokens recovering task.In this way, DDM can rely on BART to perform denoising, which can benefit from both the rich pre-learned knowledge of BART and the iterative refining paradigm of DDM.Besides, we also propose the iterative self-prompting strategy to further improve the generation quality.Experimental results on 7 datasets show that our approach can outperform competitive NAR methods, and even surpass autoregressive methods.Our code and data are released at
https://github.com/RUCAIBox/DiffusionNAT.
pdf
bib
abs
Tracing the Roots of Facts in Multilingual Language Models: Independent, Shared, and Transferred Knowledge
Xin Zhao
|
Naoki Yoshinaga
|
Daisuke Oba
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Acquiring factual knowledge for language models (LMs) in low-resource languages poses a serious challenge, thus resorting to cross-lingual transfer in multilingual LMs (ML-LMs). In this study, we ask how ML-LMs acquire and represent factual knowledge. Using the multilingual factual knowledge probing dataset, mLAMA, we first conducted a neuron investigation of ML-LMs (specifically, multilingual BERT). We then traced the roots of facts back to the knowledge source (Wikipedia) to identify the ways in which ML-LMs acquire specific facts. We finally identified three patterns of acquiring and representing facts in ML-LMs: language-independent, cross-lingual shared and transferred, and devised methods for differentiating them. Our findings highlight the challenge of maintaining consistent factual knowledge across languages, underscoring the need for better fact representation learning in ML-LMs.
pdf
bib
abs
What Matters in Memorizing and Recalling Facts? Multifaceted Benchmarks for Knowledge Probing in Language Models
Xin Zhao
|
Naoki Yoshinaga
|
Daisuke Oba
Findings of the Association for Computational Linguistics: EMNLP 2024
Language models often struggle with handling factual knowledge, exhibiting factual hallucination issue. This makes it vital to evaluate the models’ ability to recall its parametric knowledge about facts. In this study, we introduce a knowledge probing benchmark, BELIEF(ICL), to evaluate the knowledge recall ability of both encoder- and decoder-based pre-trained language models (PLMs) from diverse perspectives. BELIEFs utilize a multi-prompt dataset to evaluate PLM’s accuracy, consistency, and reliability in factual knowledge recall. To enable a more reliable evaluation with BELIEFs, we semi-automatically create MyriadLAMA, which has massively diverse prompts. We validate the effectiveness of BELIEFs in comprehensively evaluating PLM’s knowledge recall ability on diverse PLMs, including recent large language models (LLMs). We then investigate key factors in memorizing and recalling facts in PLMs, such as model size, pretraining strategy and corpora, instruction-tuning process and in-context learning settings. Finally, we reveal the limitation of the prompt-based knowledge probing. The MyriadLAMA is publicized.
pdf
bib
abs
Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References
Tianyi Tang
|
Hongyuan Lu
|
Yuchen Jiang
|
Haoyang Huang
|
Dongdong Zhang
|
Xin Zhao
|
Tom Kocmi
|
Furu Wei
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that one semantic meaning can actually be expressed in different forms, and the evaluation with a single or few references may not accurately reflect the quality of the model’s hypotheses. To address this issue, this paper presents a simple and effective method, named **Div-Ref**, to enhance existing evaluation benchmarks by enriching the number of references. We leverage large language models (LLMs) to diversify the expression of a single reference into multiple high-quality ones to cover the semantic space of the reference sentence as much as possible. We conduct comprehensive experiments to empirically demonstrate that diversifying the expression of reference can significantly enhance the correlation between automatic evaluation and human evaluation. This idea is compatible with recent LLM-based evaluation which can similarly derive advantages from incorporating multiple references. *We strongly encourage future generation benchmarks to include more references, even if they are generated by LLMs, which is once for all.* We release all the code and data at https://github.com/RUCAIBox/Div-Ref to facilitate research.
2023
pdf
bib
abs
RE-Matching: A Fine-Grained Semantic Matching Method for Zero-Shot Relation Extraction
Jun Zhao
|
WenYu Zhan
|
Xin Zhao
|
Qi Zhang
|
Tao Gui
|
Zhongyu Wei
|
Junzhe Wang
|
Minlong Peng
|
Mingming Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Semantic matching is a mainstream paradigm of zero-shot relation extraction, which matches a given input with a corresponding label description. The entities in the input should exactly match their hypernyms in the description, while the irrelevant contexts should be ignored when matching. However, general matching methods lack explicit modeling of the above matching pattern. In this work, we propose a fine-grained semantic matching method tailored for zero-shot relation extraction. Guided by the above matching pattern, we decompose the sentence-level similarity score into the entity matching score and context matching score. Considering that not all contextual words contribute equally to the relation semantics, we design a context distillation module to reduce the negative impact of irrelevant components on context matching. Experimental results show that our method achieves higher matching accuracy and more than 10 times faster inference speed, compared with the state-of-the-art methods.
pdf
bib
abs
Open Set Relation Extraction via Unknown-Aware Training
Jun Zhao
|
Xin Zhao
|
WenYu Zhan
|
Qi Zhang
|
Tao Gui
|
Zhongyu Wei
|
Yun Wen Chen
|
Xiang Gao
|
Xuanjing Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The existing supervised relation extraction methods have achieved impressive performance in a closed-set setting, in which the relations remain the same during both training and testing. In a more realistic open-set setting, unknown relations may appear in the test set. Due to the lack of supervision signals from unknown relations, a well-performing closed-set relation extractor can still confidently misclassify them into known relations. In this paper, we propose an unknown-aware training method, regularizing the model by dynamically synthesizing negative instances that can provide the missing supervision signals. Inspired by text adversarial attack, We adaptively apply small but critical perturbations to original training data,synthesizing difficult enough negative instances that are mistaken by the model as known relations, thus facilitating a compact decision boundary. Experimental results show that our method achieves SOTA unknown relation detection without compromising the classification of known relations.
pdf
bib
abs
Evaluating Object Hallucination in Large Vision-Language Models
Yifan Li
|
Yifan Du
|
Kun Zhou
|
Jinpeng Wang
|
Xin Zhao
|
Ji-Rong Wen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Inspired by the superior language abilities of large language models (LLM), large vision-language models (LVLM) have been recently proposed by integrating powerful LLMs for improving the performance on complex multimodal tasks. Despite the promising progress on LVLMs, we find that they suffer from object hallucinations, i.e., they tend to generate objects inconsistent with the target images in the descriptions. To investigate it, this work presents the first systematic study on object hallucination of LVLMs. We conduct the evaluation experiments on several representative LVLMs, and show that they mostly suffer from severe object hallucination issues. We further discuss that the visual instructions may influence the hallucination, and find that: objects that frequently appear in the visual instructions or co-occur with the image objects are obviously prone to be hallucinated by LVLMs. Besides, we further design a polling-based query method called POPE for better evaluation of object hallucination. Experiment results show that our POPE can evaluate object hallucination in a more stable and flexible way.
pdf
bib
abs
ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained Language Models for Question Answering over Knowledge Graph
Jinhao Jiang
|
Kun Zhou
|
Xin Zhao
|
Yaliang Li
|
Ji-Rong Wen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Question Answering over Knowledge Graph (KGQA) aims to seek answer entities for the natural language question from a large-scale Knowledge Graph (KG). To better perform reasoning on KG, recent work typically adopts a pre-trained language model (PLM) to model the question, and a graph neural network (GNN) based module to perform multi-hop reasoning on the KG. Despite the effectiveness, due to the divergence in model architecture, the PLM and GNN are not closely integrated, limiting the knowledge sharing and fine-grained feature interactions. To solve it, we aim to simplify the above two-module approach, and develop a more capable PLM that can directly support subgraph reasoning for KGQA, namely ReasoningLM. In our approach, we propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning, and also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions. After adaptation, the PLM can be parameter-efficient fine-tuned on downstream tasks. Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data. Our codes and data are publicly available at https://github.com/RUCAIBox/ReasoningLM.
pdf
bib
abs
HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models
Junyi Li
|
Xiaoxue Cheng
|
Xin Zhao
|
Jian-Yun Nie
|
Ji-Rong Wen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs), such as ChatGPT, are prone to generate hallucinations, i.e., content that conflicts with the source or cannot be verified by the factual knowledge. To understand what types of content and to which extent LLMs are apt to hallucinate, we introduce the Hallucination Evaluation for Large Language Models (HaluEval) benchmark, a large collection of generated and human-annotated hallucinated samples for evaluating the performance of LLMs in recognizing hallucination. To generate these samples, we propose a ChatGPT-based two-step framework, i.e., sampling-then-filtering. Besides, we also hire some human labelers to annotate the hallucinations in ChatGPT responses. The empirical results suggest that ChatGPT is likely to generate hallucinated content in specific topics by fabricating unverifiable information (i.e., about 19.5% user queries). Moreover, existing LLMs face great challenges in recognizing the hallucinations in texts. While, our experiments also prove that the hallucination recognition can be improved by providing external knowledge or adding reasoning steps.
pdf
bib
abs
StructGPT: A General Framework for Large Language Model to Reason over Structured Data
Jinhao Jiang
|
Kun Zhou
|
Zican Dong
|
Keming Ye
|
Xin Zhao
|
Ji-Rong Wen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
In this paper, we aim to improve the reasoning ability of large language models (LLMs) over structured data in a unified way. Inspired by the studies on tool augmentation for LLMs, we develop an Iterative Reading-then-Reasoning (IRR) framework to solve question answering tasks based on structured data, called StructGPT. In this framework, we construct the specialized interfaces to collect relevant evidence from structured data (i.e., reading), and let LLMs concentrate on the reasoning task based on the collected information (i.e., reasoning). Specially, we propose an invoking-linearization-generation procedure to support LLMs in reasoning on the structured data with the help of the interfaces. By iterating this procedure with provided interfaces, our approach can gradually approach the target answers to a given query. Experiments conducted on three types of structured data show that StructGPT greatly improves the performance of LLMs, under the few-shot and zero-shot settings.
pdf
bib
abs
Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models
Xiaolei Wang
|
Xinyu Tang
|
Xin Zhao
|
Jingyuan Wang
|
Ji-Rong Wen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs), which rely on natural language conversations to satisfy user needs. In this paper, we embark on an investigation into the utilization of ChatGPT for CRSs, revealing the inadequacy of the existing evaluation protocol. It might overemphasize the matching with ground-truth items annotated by humans while neglecting the interactive nature of CRSs. To overcome the limitation, we further propose an **i**nteractive **Eva**luation approach based on **L**L**M**s, named **iEvaLM**, which harnesses LLM-based user simulators. Our evaluation approach can simulate various system-user interaction scenarios. Through the experiments on two public CRS datasets, we demonstrate notable improvements compared to the prevailing evaluation protocol. Furthermore, we emphasize the evaluation of explainability, and ChatGPT showcases persuasive explanation generation for its recommendations. Our study contributes to a deeper comprehension of the untapped potential of LLMs for CRSs and provides a more flexible and realistic evaluation approach for future research about LLM-based CRSs.
pdf
bib
abs
Not All Languages Are Created Equal in LLMs: Improving Multilingual Capability by Cross-Lingual-Thought Prompting
Haoyang Huang
|
Tianyi Tang
|
Dongdong Zhang
|
Xin Zhao
|
Ting Song
|
Yan Xia
|
Furu Wei
Findings of the Association for Computational Linguistics: EMNLP 2023
Large language models (LLMs) demonstrate impressive multilingual capability, but their performance varies substantially across different languages. In this work, we introduce a simple yet effective method, called cross-lingual-thought prompting (XLT), to systematically improve the multilingual capability of LLMs. Specifically, XLT is a generic template prompt that stimulates cross-lingual and logical reasoning skills to enhance task performance across languages. We conduct comprehensive evaluations on 7 typical benchmarks related to reasoning, understanding, and generation tasks, covering both high-resource and low-resource languages. Experimental results show that XLT not only remarkably enhances the performance of various multilingual tasks but also significantly reduces the gap between the average performance and the best performance of each task in different languages. Notably, XLT brings over 10 points of average improvement in arithmetic reasoning and open-domain question-answering tasks.
pdf
bib
abs
Enhancing Scalability of Pre-trained Language Models via Efficient Parameter Sharing
Peiyu Liu
|
Ze-Feng Gao
|
Yushuo Chen
|
Xin Zhao
|
Ji-Rong Wen
Findings of the Association for Computational Linguistics: EMNLP 2023
In this paper, we propose a highly parameter-efficient approach to scaling pre-trained language models (PLMs) to a deeper model depth. Unlike prior work that shares all parameters or uses extra blocks, we design a more capable parameter-sharing architecture based on matrix product operator (MPO), an efficient tensor decomposition method to factorize the parameter matrix into a set of local tensors. Based on such a decomposition, we share the important local tensor across all layers for reducing the model size and meanwhile keep layer-specific tensors (also using Adapters) for enhancing the adaptation flexibility. To improve the model training, we further propose a stable initialization algorithm tailored for the MPO-based architecture. Extensive experiments have demonstrated the effectiveness of our proposed model in enhancing scalability and achieving higher performance (i.e., with fewer parameters than BERT-base, we successfully scale the model depth by a factor of 4x and even achieve 0.1 points higher than BERT-large for GLUE score). The code to reproduce the results of this paper can be found at https://github.com/RUCAIBox/MPOBERT-code.
pdf
bib
abs
ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large Language Models
Zhipeng Chen
|
Kun Zhou
|
Beichen Zhang
|
Zheng Gong
|
Xin Zhao
|
Ji-Rong Wen
Findings of the Association for Computational Linguistics: EMNLP 2023
Although large language models (LLMs) have achieved excellent performance in a variety of evaluation benchmarks, they still struggle in complex reasoning tasks which require specific knowledge and multi-hop reasoning. To improve the reasoning abilities, we propose ChatCoT, a tool-augmented chain-of-thought reasoning framework for chat-based LLMs (e.g., ChatGPT). In ChatCoT, we model the chain-of-thought (CoT) reasoning as multi-turn conversations, to utilize tools in a more natural way through chatting. At each turn, LLMs can either interact with tools or perform the reasoning. Our approach can effectively leverage the multi-turn conversation ability of chat-based LLMs, and integrate the thought chain following and tools manipulation in a unified way. Specially, we initialize the early turns of the conversation by the knowledge about tools, tasks, and reasoning format, and propose an iterative tool-augmented reasoning step to perform step-by-step tool-augmented reasoning. The experiment results on two complex reasoning datasets (MATH and HotpotQA) have shown the effectiveness of ChatCoT on complex reasoning tasks, achieving a 7.9% relative improvement over the state-of-the-art baseline.
pdf
bib
abs
A Thorough Examination on Zero-shot Dense Retrieval
Ruiyang Ren
|
Yingqi Qu
|
Jing Liu
|
Xin Zhao
|
Qifei Wu
|
Yuchen Ding
|
Hua Wu
|
Haifeng Wang
|
Ji-Rong Wen
Findings of the Association for Computational Linguistics: EMNLP 2023
Recent years have witnessed the significant advance in dense retrieval (DR) based on powerful pre-trained language models (PLM). DR models have achieved excellent performance in several benchmark datasets, while they are shown to be not as competitive as traditional sparse retrieval models (e.g., BM25) in a zero-shot retrieval setting. However, in the related literature, there still lacks a detailed and comprehensive study on zero-shot retrieval. In this paper, we present the first thorough examination of the zero-shot capability of DR models. We aim to identify the key factors and analyze how they affect zero-shot retrieval performance. In particular, we discuss the effect of several key factors related to source training set, analyze the potential bias from the target dataset, and review and compare existing zero-shot DR models. Our findings provide important evidence to better understand and develop zero-shot DR models.
2022
pdf
bib
abs
Continual Pre-training of Language Models for Math Problem Understanding with Syntax-Aware Memory Network
Zheng Gong
|
Kun Zhou
|
Xin Zhao
|
Jing Sha
|
Shijin Wang
|
Ji-Rong Wen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper, we study how to continually pre-train language models for improving the understanding of math problems. Specifically, we focus on solving a fundamental challenge in modeling math problems, how to fuse the semantics of textual description and formulas, which are highly different in essence. To address this issue, we propose a new approach called
COMUS to
continually pre-train language models for
math problem
understanding with
syntax-aware memory network. In this approach, we first construct the math syntax graph to model the structural semantic information, by combining the parsing trees of the text and formulas, and then design the syntax-aware memory networks to deeply fuse the features from the graph and text. With the help of syntax relations, we can model the interaction between the token from the text and its semantic-related nodes within the formulas, which is helpful to capture fine-grained semantic correlations between texts and formulas. Besides, we devise three continual pre-training tasks to further align and fuse the representations of the text and math syntax graph. Experimental results on four tasks in the math domain demonstrate the effectiveness of our approach. Our code and data are publicly available at the link: blue
https://github.com/RUCAIBox/COMUS.
pdf
bib
abs
Debiased Contrastive Learning of Unsupervised Sentence Representations
Kun Zhou
|
Beichen Zhang
|
Xin Zhao
|
Ji-Rong Wen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recently, contrastive learning has been shown to be effective in improving pre-trained language models (PLM) to derive high-quality sentence representations. It aims to pull close positive examples to enhance the alignment while push apart irrelevant negatives for the uniformity of the whole representation space. However, previous works mostly adopt in-batch negatives or sample from training data at random. Such a way may cause the sampling bias that improper negatives (false negatives and anisotropy representations) are used to learn sentence representations, which will hurt the uniformity of the representation space. To address it, we present a new framework
DCLR (Debiased Contrastive Learning of unsupervised sentence Representations) to alleviate the influence of these improper negatives.In DCLR, we design an instance weighting method to punish false negatives and generate noise-based negatives to guarantee the uniformity of the representation space.Experiments on seven semantic textual similarity tasks show that our approach is more effective than competitive baselines. Our code and data are publicly available at the link: blue
https://github.com/RUCAIBox/DCLR.
pdf
bib
abs
Read Extensively, Focus Smartly: A Cross-document Semantic Enhancement Method for Visual Documents NER
Jun Zhao
|
Xin Zhao
|
WenYu Zhan
|
Tao Gui
|
Qi Zhang
|
Liang Qiao
|
Zhanzhan Cheng
|
Shiliang Pu
Proceedings of the 29th International Conference on Computational Linguistics
The introduction of multimodal information and pretraining technique significantly improves entity recognition from visually-rich documents. However, most of the existing methods pay unnecessary attention to irrelevant regions of the current document while ignoring the potentially valuable information in related documents. To deal with this problem, this work proposes a cross-document semantic enhancement method, which consists of two modules: 1) To prevent distractions from irrelevant regions in the current document, we design a learnable attention mask mechanism, which is used to adaptively filter redundant information in the current document. 2) To further enrich the entity-related context, we propose a cross-document information awareness technique, which enables the model to collect more evidence across documents to assist in prediction. The experimental results on two documents understanding benchmarks covering eight languages demonstrate that our method outperforms the SOTA methods.
pdf
bib
abs
Great~Truths~are ~Always ~Simple: A Rather Simple Knowledge Encoder for Enhancing the Commonsense Reasoning Capacity of Pre-Trained Models
Jinhao Jiang
|
Kun Zhou
|
Ji-Rong Wen
|
Xin Zhao
Findings of the Association for Computational Linguistics: NAACL 2022
Commonsense reasoning in natural language is a desired ability of artificial intelligent systems. For solving complex commonsense reasoning tasks, a typical solution is to enhance pre-trained language models (PTMs) with a knowledge-aware graph neural network (GNN) encoder that models a commonsense knowledge graph (CSKG).Despite the effectiveness, these approaches are built on heavy architectures, and can’t clearly explain how external knowledge resources improve the reasoning capacity of PTMs. Considering this issue, we conduct a deep empirical analysis, and find that it is indeed
relation features from CSKGs (but not
node features) that mainly contribute to the performance improvement of PTMs. Based on this finding, we design a simple MLP-based knowledge encoder that utilizes statistical relation paths as features. Extensive experiments conducted on five benchmarks demonstrate the effectiveness of our approach, which also largely reduces the parameters for encoding CSKGs.Our codes and data are publicly available at
https://github.com/RUCAIBox/SAFE.
pdf
bib
abs
Learning to Transfer Prompts for Text Generation
Junyi Li
|
Tianyi Tang
|
Jian-Yun Nie
|
Ji-Rong Wen
|
Xin Zhao
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Pretrained language models (PLMs) have made remarkable progress in text generation tasks via fine-tuning. While, it is challenging to fine-tune PLMs in a data-scarce situation. Therefore, it is non-trivial to develop a general and lightweight model that can adapt to various text generation tasks based on PLMs. To fulfill this purpose, the recent prompt-based learning offers a potential solution. In this paper, we improve this technique and propose a novel prompt-based method (PTG) for text generation in a transferable setting. First, PTG learns a set of source prompts for various source generation tasks and then transfers these prompts as target prompts to perform target generation tasks. To consider both task- and instance-level information, we design an adaptive attention mechanism to derive the target prompts. For each data instance, PTG learns a specific target prompt by attending to highly relevant source prompts. In extensive experiments, PTG yields competitive or better results than fine-tuning methods. We release our source prompts as an open resource, where users can add or reuse them to improve new text generation tasks for future research. Code and data can be available at
https://github.com/RUCAIBox/Transfer-Prompts-for-Text-Generation.
pdf
bib
abs
ElitePLM: An Empirical Study on General Language Ability Evaluation of Pretrained Language Models
Junyi Li
|
Tianyi Tang
|
Zheng Gong
|
Lixin Yang
|
Zhuohao Yu
|
Zhipeng Chen
|
Jingyuan Wang
|
Xin Zhao
|
Ji-Rong Wen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Nowadays, pretrained language models (PLMs) have dominated the majority of NLP tasks. While, little research has been conducted on systematically evaluating the language abilities of PLMs. In this paper, we present a large-scale empirical study on general language ability evaluation of PLMs (ElitePLM). In our study, we design four evaluation dimensions, memory, comprehension, reasoning, and composition, to measure ten widely-used PLMs within five categories. Our empirical results demonstrate that: (1) PLMs with varying training objectives and strategies are good at different ability tests; (2) fine-tuning PLMs in downstream tasks is usually sensitive to the data size and distribution; (3) PLMs have excellent transferability between similar tasks. Moreover, the prediction results of PLMs in our experiments are released as an open resource for more deep and detailed analysis on the language abilities of PLMs. This paper can guide the future work to select, apply, and design PLMs for specific tasks. We have made all the details of experiments publicly available at
https://github.com/RUCAIBox/ElitePLM.
2019
pdf
bib
abs
UER: An Open-Source Toolkit for Pre-training Models
Zhe Zhao
|
Hui Chen
|
Jinbin Zhang
|
Xin Zhao
|
Tao Liu
|
Wei Lu
|
Xi Chen
|
Haotang Deng
|
Qi Ju
|
Xiaoyong Du
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations
Existing works, including ELMO and BERT, have revealed the importance of pre-training for NLP tasks. While there does not exist a single pre-training model that works best in all cases, it is of necessity to develop a framework that is able to deploy various pre-training models efficiently. For this purpose, we propose an assemble-on-demand pre-training toolkit, namely Universal Encoder Representations (UER). UER is loosely coupled, and encapsulated with rich modules. By assembling modules on demand, users can either reproduce a state-of-the-art pre-training model or develop a pre-training model that remains unexplored. With UER, we have built a model zoo, which contains pre-trained models based on different corpora, encoders, and targets (objectives). With proper pre-trained models, we could achieve new state-of-the-art results on a range of downstream datasets.
2014
pdf
bib
Group based Self Training for E-Commerce Product Record Linkage
Xin Zhao
|
Yuexin Wu
|
Hongfei Yan
|
Xiaoming Li
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers
2012
pdf
bib
Identifying Event-related Bursts via Social Media Activities
Xin Zhao
|
Baihan Shu
|
Jing Jiang
|
Yang Song
|
Hongfei Yan
|
Xiaoming Li
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
pdf
bib
A Novel Burst-based Text Representation Model for Scalable Event Detection
Xin Zhao
|
Rishan Chen
|
Kai Fan
|
Hongfei Yan
|
Xiaoming Li
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
2011
pdf
bib
Topical Keyphrase Extraction from Twitter
Xin Zhao
|
Jing Jiang
|
Jing He
|
Yang Song
|
Palakorn Achanauparp
|
Ee-Peng Lim
|
Xiaoming Li
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
2010
pdf
bib
Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid
Xin Zhao
|
Jing Jiang
|
Hongfei Yan
|
Xiaoming Li
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing
2004
pdf
bib
abs
A super-function based Japanese-Chinese machine translation system for business users
Xin Zhao
|
Fuji Ren
|
Stefan Voß
Proceedings of the 6th Conference of the Association for Machine Translation in the Americas: Technical Papers
In this paper, a Japanese-Chinese Machine Translation (MT) system using the so-called Super-Function (SF) approach is presented. A SF is a functional relation mapping sentences from one language to another. The core of the system uses the SF approach to translate without going through syntactic and semantic analysis as many MT systems usually do. Our work focuses on business users for whom MT often is a great help if they need an immediate idea of the content of texts like e-mail messages, reports, web pages, or business letters. In this paper, we aim at performing MT between Japanese and Chinese to translate business letters by the SF based technique.