Xinyu Zhao

May refer to several people

Other people with similar names: Xinyu Zhao (MIT)


2025

pdf bib
Bit-Flip Error Resilience in LLMs: A Comprehensive Analysis and Defense Framework
Yuhang Chen | Zhen Tan | Ajay Kumar Jaiswal | Huaizhi Qu | Xinyu Zhao | Qi Lin | Yu Cheng | Andrew Kwong | Zhichao Cao | Tianlong Chen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Bit-flip errors (BFEs) are hardware faults where individual bits in memory or processing units are unintentionally flipped. These errors pose a significant threat to neural network reliability because even small changes in model parameters can lead to large shifts in outputs. Large language models (LLMs) are particularly vulnerable on resource-constrained or outdated hardware. Such hardware often lacks error-correction mechanisms and faces aging issues, leading to instability under the vast parameter counts and heavy computational loads of LLMs. While the impact of BFEs on traditional networks like CNNs is relatively well-studied, their effect on the complex architecture of transformers remains largely unexplored. Firstly, this paper presents a comprehensive systematic analysis of BFE vulnerabilities in key LLM components, revealing distinct sensitivities across parameters, activations, and gradients during fine-tuning and inference. Secondly, based on our findings, we introduce a novel defense strategy FlipGuard: (i) exponent bit protection, and (ii) a self-correction based fine-tuning mechanism, to address BFE consequences. FlipGuard minimizes performance degradation while significantly enhancing robustness against BFEs. Experiments demonstrate a 9.27 reduction in accuracy drop under 1 BFEs on the SST-2 dataset using BERT, and a 36.35-point improvement in perplexity on the Wikitext-103 dataset using GPT-2, compared to unprotected models. These results show the potential of our approach in enabling reliable LLM deployment on diverse and less reliable hardware platforms.

pdf bib
Task-Aware Resolution Optimization for Visual Large Language Models
Weiqing Luo | Zhen Tan | Yifan Li | Xinyu Zhao | Kwonjoon Lee | Behzad Dariush | Tianlong Chen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Real-world vision-language applications demand varying levels of perceptual granularity. However, most existing visual large language models (VLLMs), such as LLaVA, pre-assume a fixed resolution for downstream tasks, which leads to subpar performance. To address this problem, we first conduct a comprehensive and pioneering investigation into the resolution preferences of different vision-language tasks, revealing a correlation between resolution preferences with (1) image complexity, and (2) uncertainty variance of the VLLM at different image input resolutions. Building on this insight, we propose an empirical formula to determine the optimal resolution for a given vision-language task, accounting for these two factors as the zeroth-order and first-order terms in the Taylor expansion on a given image input. Second, based on rigorous experiments, we propose a novel parameter-efficient fine-tuning technique to extend the visual input resolution of pre-trained VLLMs to the identified optimal resolution. Extensive experiments on various vision-language tasks validate the effectiveness of our method.

pdf bib
UQ-Merge: Uncertainty Guided Multimodal Large Language Model Merging
Huaizhi Qu | Xinyu Zhao | Jie Peng | Kwonjoon Lee | Behzad Dariush | Tianlong Chen
Findings of the Association for Computational Linguistics: ACL 2025

Multimodal Large Language Models (MLLMs) have gained increasing popularity as a promising framework for leveraging the strong language reasoning capabilities in the vision-language domain. Given a wide range of MLLMs, model merging potentially offers a cheap way to aggregate their diverse knowledge into a single MLLM. However, directly plug-in existing model merging approaches often leads to suboptimal performance due to (1) inclusion of harmful models that have over-confident predictions in the target task; (2) the lack of specialized designs for vision-language inputs. To tackle these pain points, we conduct pioneering investigations to dissect the merging procedures and propose an uncertainty-guided MLLM merging algorithm, i.e., UQ-Merge, which i) identifies beneficial candidates for merging, ii) determines the merging order and the number of helpful candidates, and iii) performs appropriate merging. Within our framework, we consider uncertainty quantification on both text and vision inputs to examine the MLLM prediction confidence, and then decide whether and when a MLLM needs to be included. It is worth mentioning that our vision-language uncertainty quantification does not require access to sample labels, making it more practical in various scenarios. Extensive experiments consistently demonstrate the superior MLLM merging performance of UQ-Merge in both held-in and held-out vision-language benchmarks. For example, compared to existing state-of-the-art merging methods, UQ-Merge brings substantial performance improvements of up to 44.3% on average accuracy in 12 datasets. Codes are available at https://anonymous.4open.science/r/UQ-Merge-7CD7.

pdf bib
GuideLLM: Exploring LLM-Guided Conversation with Applications in Autobiography Interviewing
Jinhao Duan | Xinyu Zhao | Zhuoxuan Zhang | Eunhye Grace Ko | Lily Boddy | Chenan Wang | Tianhao Li | Alexander Rasgon | Junyuan Hong | Min Kyung Lee | Chenxi Yuan | Qi Long | Ying Ding | Tianlong Chen | Kaidi Xu
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Although Large Language Models (LLMs) succeed in human-guided conversations such as instruction following and question answering, the potential of LLM-guided conversations—where LLMs direct the discourse and steer the conversation’s objectives—remains under-explored. In this study, we first characterize LLM-guided conversation into three fundamental components: (i) Goal Navigation; (ii) Context Management; (iii) Empathetic Engagement, and propose GuideLLM as an installation. We then implement an interviewing environment for the evaluation of LLM-guided conversation. Specifically, various topics are involved in this environment for comprehensive interviewing evaluation, resulting in around 1.4k turns of utterances, 184k tokens, and over 200 events mentioned during the interviewing for each chatbot evaluation. We compare GuideLLM with 6 state-of-the-art LLMs such as GPT-4o and Llama-3-70b-Instruct, from the perspective of interviewing quality, and autobiography generation quality. For automatic evaluation, we derive user proxies from multiple autobiographies and employ LLM-as-a-judge to score LLM behaviors. We further conduct a human-involved experiment by employing 45 human participants to chat with GuideLLM and baselines. We then collect human feedback, preferences, and ratings regarding the qualities of conversation and autobiography. Experimental results indicate that GuideLLM significantly outperforms baseline LLMs in automatic evaluation and achieves consistent leading performances in human ratings.

2023

pdf bib
PersLEARN: Research Training through the Lens of Perspective Cultivation
Yu-Zhe Shi | Shiqian Li | Xinyi Niu | Qiao Xu | Jiawen Liu | Yifan Xu | Shiyu Gu | Bingru He | Xinyang Li | Xinyu Zhao | Zijian Zhao | Yidong Lyu | Zhen Li | Sijia Liu | Lin Qiu | Jinhao Ji | Lecheng Ruan | Yuxi Ma | Wenjuan Han | Yixin Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Scientific research is inherently shaped by its authors’ perspectives, influenced by various factorssuch as their personality, community, or society. Junior researchers often face challenges in identifying the perspectives reflected in the existing literature and struggle to develop their own viewpoints. In response to this issue, we introduce PersLEARN , a tool designed to facilitate the cultivation of scientific perspectives, starting from a basic seed idea and progressing to a well-articulated framework. By interacting with a prompt-based model, researchers can develop their perspectives explicitly. Our humanstudy reveals that scientific perspectives developed by students using PersLEARN exhibit a superior level of logical coherence and depth compared to those that did not. Furthermore, our pipeline outperforms baseline approaches across multiple domains of literature from various perspectives. These results suggest that PersLEARN could help foster a greater appreciation of diversity in scientific perspectives as an essential component of research training.

2018

pdf bib
Domain Adaptation Using a Combination of Multiple Embeddings for Sentiment Analysis
Hiroyuki Shinnou | Xinyu Zhao | Kanako Komiya
Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation