Yan Gao


pdf bib
Uncovering and Categorizing Social Biases in Text-to-SQL
Yan Liu | Yan Gao | Zhe Su | Xiaokang Chen | Elliott Ash | Jian-Guang Lou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large pre-trained language models are acknowledged to carry social bias towards different demographics, which can further amplify existing stereotypes in our society and cause even more harm. Text-to-SQL is an important task, models of which are mainly adopted by administrative industries, where unfair decisions may lead to catastrophic consequences. However, existing Text-to-SQL models are trained on clean, neutral datasets, such as Spider and WikiSQL. This, to some extent, cover up social bias in models under ideal conditions, which nevertheless may emerge in real application scenarios. In this work, we aim to uncover and mitigate social bias in Text-to-SQL models. We summarize the categories of social bias that may occur in structural data for Text-to-SQL models. We build test benchmarks and reveal that models with similar task accuracy can contain social bias at very different rates. We show how to take advantage of our methodology to assess and mitigate social bias in the downstream Text-to-SQL task.

pdf bib
Know What I don’t Know: Handling Ambiguous and Unknown Questions for Text-to-SQL
Bing Wang | Yan Gao | Zhoujun Li | Jian-Guang Lou
Findings of the Association for Computational Linguistics: ACL 2023

The task of text-to-SQL aims to convert a natural language question into its corresponding SQL query within the context of relational tables. Existing text-to-SQL parsers generate a plausible SQL query for an arbitrary user question, thereby failing to correctly handle problematic user questions. To formalize this problem, we conduct a preliminary study on the observed ambiguous and unanswerable cases in text-to-SQL and summarize them into 6 feature categories. Correspondingly, we identify the causes behind each category and propose requirements for handling ambiguous and unanswerable questions. Following this study, we propose a simple yet effective counterfactual example generation approach that automatically produces ambiguous and unanswerable text-to-SQL examples. Furthermore, we propose a weakly supervised DTE (Detecting-Then-Explaining) model for error detection, localization, and explanation. Experimental results show that our model achieves the best result on both real-world examples and generated examples compared with various baselines. We release our data and code at: https://github.com/wbbeyourself/DTE.

pdf bib
TACR: A Table Alignment-based Cell Selection Method for HybridQA
Jian Wu | Yicheng Xu | Yan Gao | Jian-Guang Lou | Börje Karlsson | Manabu Okumura
Findings of the Association for Computational Linguistics: ACL 2023

Hybrid Question-Answering (HQA), which targets reasoning over tables and passages linked from table cells, has witnessed significant research in recent years. A common challenge in HQA and other passage-table QA datasets is that it is generally unrealistic to iterate over all table rows, columns, and linked passages to retrieve evidence. Such a challenge made it difficult for previous studies to show their reasoning ability in retrieving answers. To bridge this gap, we propose a novel Table-alignment-based Cell-selection and Reasoning model (TACR) for hybrid text and table QA, evaluated on the HybridQA and WikiTableQuestions datasets. In evidence retrieval, we design a table-question-alignment enhanced cell-selection method to retrieve fine-grained evidence. In answer reasoning, we incorporate a QA module that treats the row containing selected cells as context. Experimental results over the HybridQA and WikiTableQuestions (WTQ) datasets show that TACR achieves state-of-the-art results on cell selection and outperforms fine-grained evidence retrieval baselines on HybridQA, while achieving competitive performance on WTQ. We also conducted a detailed analysis to demonstrate that being able to align questions to tables in the cell-selection stage can result in important gains from experiments of over 90% table row and column selection accuracy, meanwhile also improving output explainability.

pdf bib
2INER: Instructive and In-Context Learning on Few-Shot Named Entity Recognition
Jiasheng Zhang | Xikai Liu | Xinyi Lai | Yan Gao | Shusen Wang | Yao Hu | Yiqing Lin
Findings of the Association for Computational Linguistics: EMNLP 2023

Prompt-based learning has emerged as a powerful technique in natural language processing (NLP) due to its ability to leverage pre-training knowledge for downstream few-shot tasks. In this paper, we propose 2INER, a novel text-to-text framework for Few-Shot Named Entity Recognition (NER) tasks. Our approach employs instruction finetuning based on InstructionNER to enable the model to effectively comprehend and process task-specific instructions, including both main and auxiliary tasks. We also introduce a new auxiliary task, called Type Extracting, to enhance the model’s understanding of entity types in the overall semantic context of a sentence. To facilitate in-context learning, we concatenate examples to the input, enabling the model to learn from additional contextual information. Experimental results on four datasets demonstrate that our approach outperforms existing Few-Shot NER methods and remains competitive with state-of-the-art standard NER algorithms.

pdf bib
CRT-QA: A Dataset of Complex Reasoning Question Answering over Tabular Data
Zhehao Zhang | Xitao Li | Yan Gao | Jian-Guang Lou
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) show powerful reasoning abilities on various text-based tasks. However, their reasoning capability on structured data such as tables has not been systematically explored. In this work, we first establish a comprehensive taxonomy of reasoning and operation types for tabular data analysis. Then, we construct a complex reasoning QA dataset over tabular data, named CRT-QA dataset (Complex Reasoning QA over Tabular data), with the following unique features: (1) it is the first Table QA dataset with multi-step operation and informal reasoning; (2) it contains fine-grained annotations on questions’ directness, composition types of sub-questions, and human reasoning paths which can be used to conduct a thorough investigation on LLMs’ reasoning ability; (3) it contains a collection of unanswerable and indeterminate questions that commonly arise in real-world situations. We further introduce an efficient and effective tool-augmented method, named ARC (Auto-exemplar-guided Reasoning with Code), to use external tools such as Pandas to solve table reasoning tasks without handcrafted demonstrations. The experiment results show that CRT-QA presents a strong challenge for baseline methods and ARC achieves the best result.


pdf bib
Improving Relevance Quality in Product Search using High-Precision Query-Product Semantic Similarity
Alireza Bagheri Garakani | Fan Yang | Wen-Yu Hua | Yetian Chen | Michinari Momma | Jingyuan Deng | Yan Gao | Yi Sun
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

Ensuring relevance quality in product search is a critical task as it impacts the customer’s ability to find intended products in the short-term as well as the general perception and trust of the e-commerce system in the long term. In this work we leverage a high-precision cross-encoder BERT model for semantic similarity between customer query and products and survey its effectiveness for three ranking applications where offline-generated scores could be used: (1) as an offline metric for estimating relevance quality impact, (2) as a re-ranking feature covering head/torso queries, and (3) as a training objective for optimization. We present results on effectiveness of this strategy for the large e-commerce setting, which has general applicability for choice of other high-precision models and tasks in ranking.

pdf bib
Spelling Correction using Phonetics in E-commerce Search
Fan Yang | Alireza Bagheri Garakani | Yifei Teng | Yan Gao | Jia Liu | Jingyuan Deng | Yi Sun
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

In E-commerce search, spelling correction plays an important role to find desired products for customers in processing user-typed search queries. However, resolving phonetic errors is a critical but much overlooked area. The query with phonetic spelling errors tends to appear correct based on pronunciation but is nonetheless inaccurate in spelling (e.g., “bluetooth sound system” vs. “blutut sant sistam”) with numerous noisy forms and sparse occurrences. In this work, we propose a generalized spelling correction system integrating phonetics to address phonetic errors in E-commerce search without additional latency cost. Using India (IN) E-commerce market for illustration, the experiment shows that our proposed phonetic solution significantly improves the F1 score by 9%+ and recall of phonetic errors by 8%+. This phonetic spelling correction system has been deployed to production, currently serving hundreds of millions of customers.

pdf bib
HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation
Zhoujun Cheng | Haoyu Dong | Zhiruo Wang | Ran Jia | Jiaqi Guo | Yan Gao | Shi Han | Jian-Guang Lou | Dongmei Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Tables are often created with hierarchies, but existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables. Hierarchical tables challenge numerical reasoning by complex hierarchical indexing, as well as implicit relationships of calculation and semantics. We present a new dataset, HiTab, to study question answering (QA) and natural language generation (NLG) over hierarchical tables. HiTab is a cross-domain dataset constructed from a wealth of statistical reports and Wikipedia pages, and has unique characteristics: (1) nearly all tables are hierarchical, and (2) QA pairs are not proposed by annotators from scratch, but are revised from real and meaningful sentences authored by analysts. (3) to reveal complex numerical reasoning in statistical reports, we provide fine-grained annotations of quantity and entity alignment. Experiments suggest that this HiTab presents a strong challenge for existing baselines and a valuable benchmark for future research. Targeting hierarchical structure, we devise a hierarchy-aware logical form for symbolic reasoning over tables, which shows high effectiveness. Targeting table reasoning, we leverage entity and quantity alignment to explore partially supervised training in QA and conditional generation in NLG, and largely reduce spurious predictions in QA and produce better descriptions in NLG.

pdf bib
Towards Robustness of Text-to-SQL Models Against Natural and Realistic Adversarial Table Perturbation
Xinyu Pi | Bing Wang | Yan Gao | Jiaqi Guo | Zhoujun Li | Jian-Guang Lou
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The robustness of Text-to-SQL parsers against adversarial perturbations plays a crucial role in delivering highly reliable applications. Previous studies along this line primarily focused on perturbations in the natural language question side, neglecting the variability of tables. Motivated by this, we propose the Adversarial Table Perturbation (ATP) as a new attacking paradigm to measure robustness of Text-to-SQL models. Following this proposition, we curate ADVETA, the first robustness evaluation benchmark featuring natural and realistic ATPs. All tested state-of-the-art models experience dramatic performance drops on ADVETA, revealing significant room of improvement. To defense against ATP, we build a systematic adversarial training example generation framework tailored for better contextualization of tabular data. Experiments show that our approach brings models best robustness improvement against ATP, while also substantially boost model robustness against NL-side perturbations. We will release ADVETA and code to facilitate future research.

pdf bib
Reasoning Like Program Executors
Xinyu Pi | Qian Liu | Bei Chen | Morteza Ziyadi | Zeqi Lin | Qiang Fu | Yan Gao | Jian-Guang Lou | Weizhu Chen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Reasoning over natural language is a long-standing goal for the research community. However, studies have shown that existing language models are inadequate in reasoning. To address the issue, we present POET, a novel reasoning pre-training paradigm. Through pre-training language models with programs and their execution results, POET empowers language models to harvest the reasoning knowledge possessed by program executors via a data-driven approach. POET is conceptually simple and can be instantiated by different kinds of program executors. In this paper, we showcase two simple instances POET-Math and POET-Logic, in addition to a complex instance, POET-SQL. Experimental results on six benchmarks demonstrate that POET can significantly boost model performance in natural language reasoning, such as numerical reasoning, logical reasoning, and multi-hop reasoning. POET opens a new gate on reasoning-enhancement pre-training, and we hope our analysis would shed light on the future research of reasoning like program executors.

pdf bib
Towards Knowledge-Intensive Text-to-SQL Semantic Parsing with Formulaic Knowledge
Longxu Dou | Yan Gao | Xuqi Liu | Mingyang Pan | Dingzirui Wang | Wanxiang Che | Dechen Zhan | Min-Yen Kan | Jian-Guang Lou
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by representing formulaic knowledge rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.


pdf bib
Translating Headers of Tabular Data: A Pilot Study of Schema Translation
Kunrui Zhu | Yan Gao | Jiaqi Guo | Jian-Guang Lou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Schema translation is the task of automatically translating headers of tabular data from one language to another. High-quality schema translation plays an important role in cross-lingual table searching, understanding and analysis. Despite its importance, schema translation is not well studied in the community, and state-of-the-art neural machine translation models cannot work well on this task because of two intrinsic differences between plain text and tabular data: morphological difference and context difference. To facilitate the research study, we construct the first parallel dataset for schema translation, which consists of 3,158 tables with 11,979 headers written in 6 different languages, including English, Chinese, French, German, Spanish, and Japanese. Also, we propose the first schema translation model called CAST, which is a header-to-header neural machine translation model augmented with schema context. Specifically, we model a target header and its context as a directed graph to represent their entity types and relations. Then CAST encodes the graph with a relational-aware transformer and uses another transformer to decode the header in the target language. Experiments on our dataset demonstrate that CAST significantly outperforms state-of-the-art neural machine translation models. Our dataset will be released at https://github.com/microsoft/ContextualSP.


pdf bib
“What Do You Mean by That?” A Parser-Independent Interactive Approach for Enhancing Text-to-SQL
Yuntao Li | Bei Chen | Qian Liu | Yan Gao | Jian-Guang Lou | Yan Zhang | Dongmei Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In Natural Language Interfaces to Databases systems, the text-to-SQL technique allows users to query databases by using natural language questions. Though significant progress in this area has been made recently, most parsers may fall short when they are deployed in real systems. One main reason stems from the difficulty of fully understanding the users’ natural language questions. In this paper, we include human in the loop and present a novel parser-independent interactive approach (PIIA) that interacts with users using multi-choice questions and can easily work with arbitrary parsers. Experiments were conducted on two cross-domain datasets, the WikiSQL and the more complex Spider, with five state-of-the-art parsers. These demonstrated that PIIA is capable of enhancing the text-to-SQL performance with limited interaction turns by using both simulation and human evaluation.


pdf bib
Towards Complex Text-to-SQL in Cross-Domain Database with Intermediate Representation
Jiaqi Guo | Zecheng Zhan | Yan Gao | Yan Xiao | Jian-Guang Lou | Ting Liu | Dongmei Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present a neural approach called IRNet for complex and cross-domain Text-to-SQL. IRNet aims to address two challenges: 1) the mismatch between intents expressed in natural language (NL) and the implementation details in SQL; 2) the challenge in predicting columns caused by the large number of out-of-domain words. Instead of end-to-end synthesizing a SQL query, IRNet decomposes the synthesis process into three phases. In the first phase, IRNet performs a schema linking over a question and a database schema. Then, IRNet adopts a grammar-based neural model to synthesize a SemQL query which is an intermediate representation that we design to bridge NL and SQL. Finally, IRNet deterministically infers a SQL query from the synthesized SemQL query with domain knowledge. On the challenging Text-to-SQL benchmark Spider, IRNet achieves 46.7% accuracy, obtaining 19.5% absolute improvement over previous state-of-the-art approaches. At the time of writing, IRNet achieves the first position on the Spider leaderboard.


pdf bib
The SAS Statistical Machine Translation System for WAT 2014
Rui Wang | Xu Yang | Yan Gao
Proceedings of the 1st Workshop on Asian Translation (WAT2014)


pdf bib
The Annotation of Event Schema in Chinese
Hongjian Zou | Erhong Yang | Yan Gao | Qingqing Zeng
Proceedings of the Eighth Workshop on Asian Language Resouces

pdf bib
Chinese Word Sense Induction based on Hierarchical Clustering Algorithm
Ke Cai | Xiaodong Shi | Yidong Chen | Zhehuang Huang | Yan Gao
CIPS-SIGHAN Joint Conference on Chinese Language Processing