Yan Zeng


2024

pdf bib
What Matters in Training a GPT4-Style Language Model with Multimodal Inputs?
Yan Zeng | Hanbo Zhang | Jiani Zheng | Jiangnan Xia | Guoqiang Wei | Yang Wei | Yuchen Zhang | Tao Kong | Ruihua Song
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent advancements in GPT-4V have displayed remarkable multi-modal capabilities in processing image inputs and following open-ended instructions. Despite these advancements, there is considerable scope for enhancing open-source multi-modal LLMs, especially in terms of multi-modal understanding accuracy and instruction-following proficiency. In this paper, we conduct a comprehensive study on training GPT4-style models. We introduce Lynx a multi-modal LLM developed through a series of controlled experiments comparing various model variants. This process allowed us to identify and implement an optimal training strategy tailored for multi-modal LLMs. In addition to our model development, we propose a plug-and-play technique designed to augment the instruction-following capabilities of multi-modal LLMs. We have validated the performance of Lynx on multiple benchmarks. Results demonstrate that Lynx not only achieves strong image understanding accuracy but also excels in instruction-following tasks, paving the path for ongoing enhancements in multi-modal LLMs.

2023

pdf bib
Cross-View Language Modeling: Towards Unified Cross-Lingual Cross-Modal Pre-training
Yan Zeng | Wangchunshu Zhou | Ao Luo | Ziming Cheng | Xinsong Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we introduce Cross-View Language Modeling, a simple and effective pre-training framework that unifies cross-lingual and cross-modal pre-training with shared architectures and objectives. Our approach is motivated by a key observation that cross-lingual and cross-modal pre-training share the same goal of aligning two different views of the same object into a common semantic space. To this end, the cross-view language modeling framework considers both multi-modal data (i.e., image-caption pairs) and multi-lingual data (i.e., parallel sentence pairs) as two different views of the same object, and trains the model to align the two views by maximizing the mutual information between them with conditional masked language modeling and contrastive learning. We pre-train CCLM, a Cross-lingual Cross-modal Language Model, with the cross-view language modeling framework. Empirical results on IGLUE, a multi-lingual multi-modal benchmark, and two multi-lingual image-text retrieval datasets show that while conceptually simpler, CCLM significantly outperforms the prior state-of-the-art with an average absolute improvement of over 10%. Moreover, CCLM is the first multi-lingual multi-modal pre-trained model that surpasses the translate-test performance of representative English vision-language models by zero-shot cross-lingual transfer.

pdf bib
EfficientVLM: Fast and Accurate Vision-Language Models via Knowledge Distillation and Modal-adaptive Pruning
Tiannan Wang | Wangchunshu Zhou | Yan Zeng | Xinsong Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Pre-trained vision-language models (VLMs) have achieved impressive results in a range of vision-language tasks. However, popular VLMs usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and deployment in real-world applications due to space, memory, and latency constraints. In this work, we introduce a distilling then pruning framework to compress large vision-language models into smaller, faster, and more accurate ones. We first shrink the size ofa pre-trained large VLM and apply knowledge distillation in the vision-language pre-training stage to obtain a task-agnostic compact VLM. Then we propose a modal-adaptive pruning algorithm to automatically infer the importance of vision and language modalities for different downstream tasks and adaptively remove redundant structures and neurons in different encoders with controllable target sparsity. We apply our framework to train EfficientVLM, a fast and accurate vision-language model consisting of 6 vision layers, 3 text layers, and 3 cross-modal fusion layers, accounting for only 93 million parameters in total, which is 44.3% of the teacher model. EfficientVLM retains 98.4% performance of the teacher model and accelerates its inference speed by 2.2×. EfficientVLM achieves a large absolute improvement over previous SoTA efficient VLMs of similar sizes by a large margin on various vision-language tasks, including VQAv2 (+4.9%), NLVR2 (+5.6%), ITR (R@1 on TR +17.2%, on IR + 15.6% ) and COCO caption generation (CIDEr +6.5), demonstrating a large potential on training lightweight VLMs.

pdf bib
Toward Building General Foundation Models for Language, Vision, and Vision-Language Understanding Tasks
Xinsong Zhang | Yan Zeng | Jipeng Zhang | Hang Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Foundation models or pre-trained models have substantially improved the performance of various language, vision, and vision-language understanding tasks. However, existing foundation models can only perform the best in one type of tasks, namely language, vision, or vision-language. It is still an open question whether it is possible to construct a general foundation model performing the best for all the understanding tasks. In this paper, we propose a new method for training the general foundation model, X-FM (the X-Foundation Model). X-FM has one language encoder, one vision encoder, and one fusion encoder, as well as a new training method. The training method includes two new techniques for learning X-FM from text, image, and image-text pair data. One is to stop gradients from the vision-language training when learning the language encoder. The other is to leverage the vision-language training to guide the learning of the vision encoder. Extensive experiments on benchmark datasets show that X-FM can significantly outperform existing general foundation models and perform better than or comparable to existing foundation models specifically for language, vision, or vision-language understanding. Code and pre-trained models are released at https://github.com/zhangxinsong-nlp/XFM.

2021

pdf bib
A Simple and Efficient Multi-Task Learning Approach for Conditioned Dialogue Generation
Yan Zeng | Jian-Yun Nie
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Conditioned dialogue generation suffers from the scarcity of labeled responses. In this work, we exploit labeled non-dialogue text data related to the condition, which are much easier to collect. We propose a multi-task learning approach to leverage both labeled dialogue and text data. The 3 tasks jointly optimize the same pre-trained Transformer – conditioned dialogue generation task on the labeled dialogue data, conditioned language encoding task and conditioned language generation task on the labeled text data. Experimental results show that our approach outperforms the state-of-the-art models by leveraging the labeled texts, and it also obtains larger improvement in performance comparing to the previous methods to leverage text data.

pdf bib
An Investigation of Suitability of Pre-Trained Language Models for Dialogue Generation – Avoiding Discrepancies
Yan Zeng | Jian-Yun Nie
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021