Yan Zhou


2024

pdf bib
Holistic Automated Red Teaming for Large Language Models through Top-Down Test Case Generation and Multi-turn Interaction
Jinchuan Zhang | Yan Zhou | Yaxin Liu | Ziming Li | Songlin Hu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Automated red teaming is an effective method for identifying misaligned behaviors in large language models (LLMs). Existing approaches, however, often focus primarily on improving attack success rates while overlooking the need for comprehensive test case coverage. Additionally, most of these methods are limited to single-turn red teaming, failing to capture the multi-turn dynamics of real-world human-machine interactions. To overcome these limitations, we propose **HARM** (**H**olistic **A**utomated **R**ed tea**M**ing), which scales up the diversity of test cases using a top-down approach based on an extensible, fine-grained risk taxonomy. Our method also leverages a novel fine-tuning strategy and reinforcement learning techniques to facilitate multi-turn adversarial probing in a human-like manner. Experimental results demonstrate that our framework enables a more systematic understanding of model vulnerabilities and offers more targeted guidance for the alignment process.

pdf bib
CTC-based Non-autoregressive Textless Speech-to-Speech Translation
Qingkai Fang | Zhengrui Ma | Yan Zhou | Min Zhang | Yang Feng
Findings of the Association for Computational Linguistics: ACL 2024

Direct speech-to-speech translation (S2ST) has achieved impressive translation quality, but it often faces the challenge of slow decoding due to the considerable length of speech sequences. Recently, some research has turned to non-autoregressive (NAR) models to expedite decoding, yet the translation quality typically lags behind autoregressive (AR) models significantly. In this paper, we investigate the performance of CTC-based NAR models in S2ST, as these models have shown impressive results in machine translation. Experimental results demonstrate that by combining pretraining, knowledge distillation, and advanced NAR training techniques such as glancing training and non-monotonic latent alignments, CTC-based NAR models achieve translation quality comparable to the AR model, while preserving up to 26.81× decoding speedup.

2023

pdf bib
CMOT: Cross-modal Mixup via Optimal Transport for Speech Translation
Yan Zhou | Qingkai Fang | Yang Feng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

End-to-end speech translation (ST) is the task of translating speech signals in the source language into text in the target language. As a cross-modal task, end-to-end ST is difficult to train with limited data. Existing methods often try to transfer knowledge from machine translation (MT), but their performances are restricted by the modality gap between speech and text. In this paper, we propose Cross-modal Mixup via Optimal Transport (CMOT) to overcome the modality gap. We find the alignment between speech and text sequences via optimal transport and then mix up the sequences from different modalities at a token level using the alignment. Experiments on the MuST-C ST benchmark demonstrate that CMOT achieves an average BLEU of 30.0 in 8 translation directions, outperforming previous methods. Further analysis shows CMOT can adaptively find the alignment between modalities, which helps alleviate the modality gap between speech and text.

pdf bib
TrojanSQL: SQL Injection against Natural Language Interface to Database
Jinchuan Zhang | Yan Zhou | Binyuan Hui | Yaxin Liu | Ziming Li | Songlin Hu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The technology of text-to-SQL has significantly enhanced the efficiency of accessing and manipulating databases. However, limited research has been conducted to study its vulnerabilities emerging from malicious user interaction. By proposing TrojanSQL, a backdoor-based SQL injection framework for text-to-SQL systems, we show how state-of-the-art text-to-SQL parsers can be easily misled to produce harmful SQL statements that can invalidate user queries or compromise sensitive information about the database. The study explores two specific injection attacks, namely boolean-based injection and union-based injection, which use different types of triggers to achieve distinct goals in compromising the parser. Experimental results demonstrate that both medium-sized models based on fine-tuning and LLM-based parsers using prompting techniques are vulnerable to this type of attack, with attack success rates as high as 99% and 89%, respectively. We hope that this study will raise more concerns about the potential security risks of building natural language interfaces to databases.

pdf bib
QAP: A Quantum-Inspired Adaptive-Priority-Learning Model for Multimodal Emotion Recognition
Ziming Li | Yan Zhou | Yaxin Liu | Fuqing Zhu | Chuanpeng Yang | Songlin Hu
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal emotion recognition for video has gained considerable attention in recent years, in which three modalities (i.e., textual, visual and acoustic) are involved. Due to the diverse levels of informational content related to emotion, three modalities typically possess varying degrees of contribution to emotion recognition. More seriously, there might be inconsistencies between the emotion of individual modality and the video. The challenges mentioned above are caused by the inherent uncertainty of emotion. Inspired by the recent advances of quantum theory in modeling uncertainty, we make an initial attempt to design a quantum-inspired adaptive-priority-learning model (QAP) to address the challenges. Specifically, the quantum state is introduced to model modal features, which allows each modality to retain all emotional tendencies until the final classification. Additionally, we design Q-attention to orderly integrate three modalities, and then QAP learns modal priority adaptively so that modalities can provide different amounts of information based on priority. Experimental results on the IEMOCAP and MOSEI datasets show that QAP establishes new state-of-the-art results.

2022

pdf bib
AMOA: Global Acoustic Feature Enhanced Modal-Order-Aware Network for Multimodal Sentiment Analysis
Ziming Li | Yan Zhou | Weibo Zhang | Yaxin Liu | Chuanpeng Yang | Zheng Lian | Songlin Hu
Proceedings of the 29th International Conference on Computational Linguistics

In recent years, multimodal sentiment analysis (MSA) has attracted more and more interest, which aims to predict the sentiment polarity expressed in a video. Existing methods typically 1) treat three modal features (textual, acoustic, visual) equally, without distinguishing the importance of different modalities; and 2) split the video into frames, leading to missing the global acoustic information. In this paper, we propose a global Acoustic feature enhanced Modal-Order-Aware network (AMOA) to address these problems. Firstly, a modal-order-aware network is designed to obtain the multimodal fusion feature. This network integrates the three modalities in a certain order, which makes the modality at the core position matter more. Then, we introduce the global acoustic feature of the whole video into our model. Since the global acoustic feature and multimodal fusion feature originally reside in their own spaces, contrastive learning is further employed to align them before concatenation. Experiments on two public datasets show that our model outperforms the state-of-the-art models. In addition, we also generalize our model to the sentiment with more complex semantics, such as sarcasm detection. Our model also achieves state-of-the-art performance on a widely used sarcasm dataset.