Yanan Cao


2022

pdf bib
Slot Dependency Modeling for Zero-Shot Cross-Domain Dialogue State Tracking
Qingyue Wang | Yanan Cao | Piji Li | Yanhe Fu | Zheng Lin | Li Guo
Proceedings of the 29th International Conference on Computational Linguistics

pdf bib
CLIO: Role-interactive Multi-event Head Attention Network for Document-level Event Extraction
Yubing Ren | Yanan Cao | Fang Fang | Ping Guo | Zheng Lin | Wei Ma | Yi Liu
Proceedings of the 29th International Conference on Computational Linguistics

Transforming the large amounts of unstructured text on the Internet into structured event knowledge is a critical, yet unsolved goal of NLP, especially when addressing document-level text. Existing methods struggle in Document-level Event Extraction (DEE) due to its two intrinsic challenges: (a) Nested arguments, which means one argument is the sub-string of another one. (b) Multiple events, which indicates we should identify multiple events and assemble the arguments for them. In this paper, we propose a role-interactive multi-event head attention network (CLIO) to solve these two challenges jointly. The key idea is to map different events to multiple subspaces (i.e. multi-event head). In each event subspace, we draw the semantic representation of each role closer to its corresponding arguments, then we determine whether the current event exists. To further optimize event representation, we propose an event representation enhancing strategy to regularize pre-trained embedding space to be more isotropic. Our experiments on two widely used DEE datasets show that CLIO achieves consistent improvements over previous methods.

pdf bib
Learning to Win Lottery Tickets in BERT Transfer via Task-agnostic Mask Training
Yuanxin Liu | Fandong Meng | Zheng Lin | Peng Fu | Yanan Cao | Weiping Wang | Jie Zhou
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent studies on the lottery ticket hypothesis (LTH) show that pre-trained language models (PLMs) like BERT contain matching subnetworks that have similar transfer learning performance as the original PLM. These subnetworks are found using magnitude-based pruning. In this paper, we find that the BERT subnetworks have even more potential than these studies have shown. Firstly, we discover that the success of magnitude pruning can be attributed to the preserved pre-training performance, which correlates with the downstream transferability. Inspired by this, we propose to directly optimize the subnetwork structure towards the pre-training objectives, which can better preserve the pre-training performance. Specifically, we train binary masks over model weights on the pre-training tasks, with the aim of preserving the universal transferability of the subnetwork, which is agnostic to any specific downstream tasks. We then fine-tune the subnetworks on the GLUE benchmark and the SQuAD dataset. The results show that, compared with magnitude pruning, mask training can effectively find BERT subnetworks with improved overall performance on downstream tasks. Moreover, our method is also more efficient in searching subnetworks and more advantageous when fine-tuning within a certain range of data scarcity. Our code is available at https://github.com/llyx97/TAMT.

pdf bib
Non-Autoregressive Chinese ASR Error Correction with Phonological Training
Zheng Fang | Ruiqing Zhang | Zhongjun He | Hua Wu | Yanan Cao
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Automatic Speech Recognition (ASR) is an efficient and widely used input method that transcribes speech signals into text. As the errors introduced by ASR systems will impair the performance of downstream tasks, we introduce a post-processing error correction method, PhVEC, to correct errors in text space. For the errors in ASR result, existing works mainly focus on fixed-length corrections, modifying each wrong token to a correct one (one-to-one correction), but rarely consider the variable-length correction (one-to-many or many-to-one correction). In this paper, we propose an efficient non-autoregressive (NAR) method for Chinese ASR error correction for both cases. Instead of conventionally predicting the sentence length in NAR methods, we propose a novel approach that uses phonological tokens to extend the source sentence for variable-length correction, enabling our model to generate phonetically similar corrections. Experimental results on datasets of different domains show that our method achieves significant improvement in word error rate reduction and speeds up the inference by 6.2 times compared with the autoregressive model.

pdf bib
Neural Label Search for Zero-Shot Multi-Lingual Extractive Summarization
Ruipeng Jia | Xingxing Zhang | Yanan Cao | Zheng Lin | Shi Wang | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In zero-shot multilingual extractive text summarization, a model is typically trained on English summarization dataset and then applied on summarization datasets of other languages. Given English gold summaries and documents, sentence-level labels for extractive summarization are usually generated using heuristics. However, these monolingual labels created on English datasets may not be optimal on datasets of other languages, for that there is the syntactic or semantic discrepancy between different languages. In this way, it is possible to translate the English dataset to other languages and obtain different sets of labels again using heuristics. To fully leverage the information of these different sets of labels, we propose NLSSum (Neural Label Search for Summarization), which jointly learns hierarchical weights for these different sets of labels together with our summarization model. We conduct multilingual zero-shot summarization experiments on MLSUM and WikiLingua datasets, and we achieve state-of-the-art results using both human and automatic evaluations across these two datasets.

2021

pdf bib
TEBNER: Domain Specific Named Entity Recognition with Type Expanded Boundary-aware Network
Zheng Fang | Yanan Cao | Tai Li | Ruipeng Jia | Fang Fang | Yanmin Shang | Yuhai Lu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

To alleviate label scarcity in Named Entity Recognition (NER) task, distantly supervised NER methods are widely applied to automatically label data and identify entities. Although the human effort is reduced, the generated incomplete and noisy annotations pose new challenges for learning effective neural models. In this paper, we propose a novel dictionary extension method which extracts new entities through the type expanded model. Moreover, we design a multi-granularity boundary-aware network which detects entity boundaries from both local and global perspectives. We conduct experiments on different types of datasets, the results show that our model outperforms previous state-of-the-art distantly supervised systems and even surpasses the supervised models.

pdf bib
SOM-NCSCM : An Efficient Neural Chinese Sentence Compression Model Enhanced with Self-Organizing Map
Kangli Zi | Shi Wang | Yu Liu | Jicun Li | Yanan Cao | Cungen Cao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Sentence Compression (SC), which aims to shorten sentences while retaining important words that express the essential meanings, has been studied for many years in many languages, especially in English. However, improvements on Chinese SC task are still quite few due to several difficulties: scarce of parallel corpora, different segmentation granularity of Chinese sentences, and imperfect performance of syntactic analyses. Furthermore, entire neural Chinese SC models have been under-investigated so far. In this work, we construct an SC dataset of Chinese colloquial sentences from a real-life question answering system in the telecommunication domain, and then, we propose a neural Chinese SC model enhanced with a Self-Organizing Map (SOM-NCSCM), to gain a valuable insight from the data and improve the performance of the whole neural Chinese SC model in a valid manner. Experimental results show that our SOM-NCSCM can significantly benefit from the deep investigation of similarity among data, and achieve a promising F1 score of 89.655 and BLEU4 score of 70.116, which also provides a baseline for further research on Chinese SC task.

pdf bib
Deep Differential Amplifier for Extractive Summarization
Ruipeng Jia | Yanan Cao | Fang Fang | Yuchen Zhou | Zheng Fang | Yanbing Liu | Shi Wang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

For sentence-level extractive summarization, there is a disproportionate ratio of selected and unselected sentences, leading to flatting the summary features when maximizing the accuracy. The imbalanced classification of summarization is inherent, which can’t be addressed by common algorithms easily. In this paper, we conceptualize the single-document extractive summarization as a rebalance problem and present a deep differential amplifier framework. Specifically, we first calculate and amplify the semantic difference between each sentence and all other sentences, and then apply the residual unit as the second item of the differential amplifier to deepen the architecture. Finally, to compensate for the imbalance, the corresponding objective loss of minority class is boosted by a weighted cross-entropy. In contrast to previous approaches, this model pays more attention to the pivotal information of one sentence, instead of all the informative context modeling by recurrent or Transformer architecture. We demonstrate experimentally on two benchmark datasets that our summarizer performs competitively against state-of-the-art methods. Our source code will be available on Github.

2020

pdf bib
Neural Extractive Summarization with Hierarchical Attentive Heterogeneous Graph Network
Ruipeng Jia | Yanan Cao | Hengzhu Tang | Fang Fang | Cong Cao | Shi Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Sentence-level extractive text summarization is substantially a node classification task of network mining, adhering to the informative components and concise representations. There are lots of redundant phrases between extracted sentences, but it is difficult to model them exactly by the general supervised methods. Previous sentence encoders, especially BERT, specialize in modeling the relationship between source sentences. While, they have no ability to consider the overlaps of the target selected summary, and there are inherent dependencies among target labels of sentences. In this paper, we propose HAHSum (as shorthand for Hierarchical Attentive Heterogeneous Graph for Text Summarization), which well models different levels of information, including words and sentences, and spotlights redundancy dependencies between sentences. Our approach iteratively refines the sentence representations with redundancy-aware graph and delivers the label dependencies by message passing. Experiments on large scale benchmark corpus (CNN/DM, NYT, and NEWSROOM) demonstrate that HAHSum yields ground-breaking performance and outperforms previous extractive summarizers.