Yanan Zheng


2024

pdf bib
TAIL: A Toolkit for Automatic and Realistic Long-Context Large Language Model Evaluation
Gefei Gu | Yilun Zhao | Ruoxi Ning | Yanan Zheng | Arman Cohan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

As long-context large language models (LLMs) are attracting increasing attention for their ability to handle context windows exceeding 128k tokens, the need for effective evaluation methods for these models becomes critical.Existing evaluation methods, however, fall short: needle-in-a-haystack (NIAH) and its variants are overly simplistic, while creating realistic benchmarks is prohibitively expensive due to extensive human annotation requirements. To bridge this gap, we propose TAIL, an automatic toolkit for creating realistic evaluation benchmarks and assessing the performance of long-context LLMs.With TAIL, users can customize the building of a long-context, document-grounded QA benchmark and obtain visualized performance metrics of evaluated models.TAIL has the advantage of requiring minimal human annotation and generating natural questions based on user-provided long-context documents. We apply TAIL to construct a benchmark encompassing multiple expert domains, such as finance, law, patent, and scientific literature. We then evaluate four state-of-the-art long-context LLMs using this benchmark. Results show that all LLMs experience varyingdegrees of performance degradation as contextlengths increase.

2023

pdf bib
A Universal Discriminator for Zero-Shot Generalization
Haike Xu | Zongyu Lin | Jing Zhou | Yanan Zheng | Zhilin Yang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Generative modeling has been the dominant approach for large-scale pretraining and zero-shot generalization. In this work, we challenge this convention by showing that discriminative approaches perform substantially better than generative ones on a large number of NLP tasks. Technically, we train a single discriminator to predict whether a text sample comes from the true data distribution, similar to GANs. Since many NLP tasks can be formulated as selecting from a few options, we use this discriminator to predict the concatenation of input and which option has the highest probability of coming from the true data distribution. This simple formulation achieves state-of-the-art zero-shot results on the T0 benchmark, outperforming T0 by 16.0%, 7.8%, and 11.5% respectively on different scales. In the finetuning setting, our approach also achieves new state-of-the-art results on a wide range of NLP tasks, with only 1/4 parameters of previous methods. Meanwhile, our approach requires minimal prompting efforts, which largely improves robustness and is essential for real-world applications. Furthermore, we also jointly train a generalized UD in combination with generative tasks, which maintains its advantage on discriminative tasks and simultaneously works on generative tasks.

pdf bib
Prompt-Based Metric Learning for Few-Shot NER
Yanru Chen | Yanan Zheng | Zhilin Yang
Findings of the Association for Computational Linguistics: ACL 2023

Few-shot named entity recognition (NER) targets generalizing to unseen labels and/or domains with few labeled examples. Existing metric learning methods compute token-level similarities between query and support sets, but are not able to fully incorporate label semantics into modeling. To address this issue, we propose a simple method to largely improve metric learning for NER: 1) multiple prompt schemas are designed to enhance label semantics; 2) we propose a novel architecture to effectively combine multiple prompt-based representations. Empirically, our method achieves new state-of-the-art (SOTA) results under 16 of the 18 considered settings, substantially outperforming the previous SOTA by an average of 9.12% and a maximum of 34.51% in relative gains of micro F1.

2022

pdf bib
FewNLU: Benchmarking State-of-the-Art Methods for Few-Shot Natural Language Understanding
Yanan Zheng | Jing Zhou | Yujie Qian | Ming Ding | Chonghua Liao | Li Jian | Ruslan Salakhutdinov | Jie Tang | Sebastian Ruder | Zhilin Yang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The few-shot natural language understanding (NLU) task has attracted much recent attention. However, prior methods have been evaluated under a disparate set of protocols, which hinders fair comparison and measuring the progress of the field. To address this issue, we introduce an evaluation framework that improves previous evaluation procedures in three key aspects, i.e., test performance, dev-test correlation, and stability. Under this new evaluation framework, we re-evaluate several state-of-the-art few-shot methods for NLU tasks. Our framework reveals new insights: (1) both the absolute performance and relative gap of the methods were not accurately estimated in prior literature; (2) no single method dominates most tasks with consistent performance; (3) improvements of some methods diminish with a larger pretrained model; and (4) gains from different methods are often complementary and the best combined model performs close to a strong fully-supervised baseline. We open-source our toolkit, FewNLU, that implements our evaluation framework along with a number of state-of-the-art methods.

pdf bib
FlipDA: Effective and Robust Data Augmentation for Few-Shot Learning
Jing Zhou | Yanan Zheng | Jie Tang | Li Jian | Zhilin Yang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most previous methods for text data augmentation are limited to simple tasks and weak baselines. We explore data augmentation on hard tasks (i.e., few-shot natural language understanding) and strong baselines (i.e., pretrained models with over one billion parameters). Under this setting, we reproduced a large number of previous augmentation methods and found that these methods bring marginal gains at best and sometimes degrade the performance much. To address this challenge, we propose a novel data augmentation method FlipDA that jointly uses a generative model and a classifier to generate label-flipped data. Central to the idea of FlipDA is the discovery that generating label-flipped data is more crucial to the performance than generating label-preserved data. Experiments show that FlipDA achieves a good tradeoff between effectiveness and robustness—it substantially improves many tasks while not negatively affecting the others.