Yang Deng


2023

pdf bib
Knowledge-enhanced Mixed-initiative Dialogue System for Emotional Support Conversations
Yang Deng | Wenxuan Zhang | Yifei Yuan | Wai Lam
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Unlike empathetic dialogues, the system in emotional support conversations (ESC) is expected to not only convey empathy for comforting the help-seeker, but also proactively assist in exploring and addressing their problems during the conversation. In this work, we study the problem of mixed-initiative ESC where the user and system can both take the initiative in leading the conversation. Specifically, we conduct a novel analysis on mixed-initiative ESC systems with a tailor-designed schema that divides utterances into different types with speaker roles and initiative types. Four emotional support metrics are proposed to evaluate the mixed-initiative interactions. The analysis reveals the necessity and challenges of building mixed-initiative ESC systems. In the light of this, we propose a knowledge-enhanced mixed-initiative framework (KEMI) for ESC, which retrieves actual case knowledge from a large-scale mental health knowledge graph for generating mixed-initiative responses. Experimental results on two ESC datasets show the superiority of KEMI in both content-preserving evaluation and mixed initiative related analyses.

pdf bib
PeerDA: Data Augmentation via Modeling Peer Relation for Span Identification Tasks
Weiwen Xu | Xin Li | Yang Deng | Wai Lam | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Span identification aims at identifying specific text spans from text input and classifying them into pre-defined categories. Different from previous works that merely leverage the Subordinate (SUB) relation (i.e. if a span is an instance of a certain category) to train models, this paper for the first time explores the Peer (PR) relation, which indicates that two spans are instances of the same category and share similar features. Specifically, a novel Peer Data Augmentation (PeerDA) approach is proposed which employs span pairs with the PR relation as the augmentation data for training. PeerDA has two unique advantages: (1) There are a large number of PR span pairs for augmenting the training data. (2) The augmented data can prevent the trained model from over-fitting the superficial span-category mapping by pushing the model to leverage the span semantics. Experimental results on ten datasets over four diverse tasks across seven domains demonstrate the effectiveness of PeerDA. Notably, PeerDA achieves state-of-the-art results on six of them.

pdf bib
Product Question Answering in E-Commerce: A Survey
Yang Deng | Wenxuan Zhang | Qian Yu | Wai Lam
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Product question answering (PQA), aiming to automatically provide instant responses to customer’s questions in E-Commerce platforms, has drawn increasing attention in recent years. Compared with typical QA problems, PQA exhibits unique challenges such as the subjectivity and reliability of user-generated contents in E-commerce platforms. Therefore, various problem settings and novel methods have been proposed to capture these special characteristics. In this paper, we aim to systematically review existing research efforts on PQA. Specifically, we categorize PQA studies into four problem settings in terms of the form of provided answers. We analyze the pros and cons, as well as present existing datasets and evaluation protocols for each setting. We further summarize the most significant challenges that characterize PQA from general QA applications and discuss their corresponding solutions. Finally, we conclude this paper by providing the prospect on several future directions.

pdf bib
Goal Awareness for Conversational AI: Proactivity, Non-collaborativity, and Beyond
Yang Deng | Wenqiang Lei | Minlie Huang | Tat-Seng Chua
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts)

Conversational systems are envisioned to provide social support or functional service to human users via natural language interactions. Conventional conversation researches mainly focus on the responseability of the system, such as dialogue context understanding and response generation, but overlooks the design of an essential property in intelligent conversations, i.e., goal awareness. The awareness of goals means the state of not only being responsive to the users but also aware of the target conversational goal and capable of leading the conversation towards the goal, which is a significant step towards higher-level intelligence and artificial consciousness. It can not only largely improve user engagement and service efficiency in the conversation, but also empower the system to handle more complicated conversation tasks that involve strategical and motivational interactions. In this tutorial, we will introduce the recent advances on the design of agent’s awareness of goals in a wide range of conversational systems.

pdf bib
Towards Robust Personalized Dialogue Generation via Order-Insensitive Representation Regularization
Liang Chen | Hongru Wang | Yang Deng | Wai Chung Kwan | Zezhong Wang | Kam-Fai Wong
Findings of the Association for Computational Linguistics: ACL 2023

Generating persona consistent dialogue response is important for developing an intelligent conversational agent. Recent works typically fine-tune large-scale pre-trained models on this task by concatenating persona texts and dialogue history as a single input sequence to generate the target response. While simple and effective, our analysis shows that this popular practice is seriously affected by order sensitivity where different input orders of persona sentences significantly impact the quality and consistency of generated response, resulting in severe performance fluctuations (i.e., 29.4% on GPT2 and 83.2% on BART). To mitigate the order sensitivity problem, we propose a model-agnostic framework, ORder Insensitive Generation (ORIG), which enables dialogue models to learn robust representation under different persona orders and improve the consistency of response generation. Experiments on the Persona-Chat dataset justify the effectiveness and superiority of our method with two dominant pre-trained models (GPT2 and BART).

pdf bib
Attack Prompt Generation for Red Teaming and Defending Large Language Models
Boyi Deng | Wenjie Wang | Fuli Feng | Yang Deng | Qifan Wang | Xiangnan He
Findings of the Association for Computational Linguistics: EMNLP 2023

Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs.

pdf bib
DepWiGNN: A Depth-wise Graph Neural Network for Multi-hop Spatial Reasoning in Text
Shuaiyi Li | Yang Deng | Wai Lam
Findings of the Association for Computational Linguistics: EMNLP 2023

Spatial reasoning in text plays a crucial role in various real-world applications. Existing approaches for spatial reasoning typically infer spatial relations from pure text, which overlook the gap between natural language and symbolic structures. Graph neural networks (GNNs) have showcased exceptional proficiency in inducing and aggregating symbolic structures. However, classical GNNs face challenges in handling multi-hop spatial reasoning due to the over-smoothing issue, i.e., the performance decreases substantially as the number of graph layers increases. To cope with these challenges, we propose a novel Depth-Wise Graph Neural Network (DepWiGNN). Specifically, we design a novel node memory scheme and aggregate the information over the depth dimension instead of the breadth dimension of the graph, which empowers the ability to collect long dependencies without stacking multiple layers. Experimental results on two challenging multi-hop spatial reasoning datasets show that DepWiGNN outperforms existing spatial reasoning methods. The comparisons with the other three GNNs further demonstrate its superiority in capturing long dependency in the graph.

pdf bib
Unifying Text, Tables, and Images for Multimodal Question Answering
Haohao Luo | Ying Shen | Yang Deng
Findings of the Association for Computational Linguistics: EMNLP 2023

Multimodal question answering (MMQA), which aims to derive the answer from multiple knowledge modalities (e.g., text, tables, and images), has received increasing attention due to its board applications. Current approaches to MMQA often rely on single-modal or bi-modal QA models, which limits their ability to effectively integrate information across all modalities and leverage the power of pre-trained language models. To address these limitations, we propose a novel framework called UniMMQA, which unifies three different input modalities into a text-to-text format by employing position-enhanced table linearization and diversified image captioning techniques. Additionally, we enhance cross-modal reasoning by incorporating a multimodal rationale generator, which produces textual descriptions of cross-modal relations for adaptation into the text-to-text generation process. Experimental results on three MMQA benchmark datasets show the superiority of UniMMQA in both supervised and unsupervised settings.

pdf bib
Large Language Models as Source Planner for Personalized Knowledge-grounded Dialogues
Hongru Wang | Minda Hu | Yang Deng | Rui Wang | Fei Mi | Weichao Wang | Yasheng Wang | Wai-Chung Kwan | Irwin King | Kam-Fai Wong
Findings of the Association for Computational Linguistics: EMNLP 2023

Open-domain dialogue system usually requires different sources of knowledge to generate more informative and evidential responses. However, existing knowledge-grounded dialogue systems either focus on a single knowledge source or overlook the dependency between multiple sources of knowledge, which may result in generating inconsistent or even paradoxical responses. To incorporate multiple knowledge sources and dependencies between them, we propose SAFARI, a novel framework that leverages the exceptional capabilities of large language models (LLMs) in planning, understanding, and incorporating under both supervised and unsupervised settings. Specifically, SAFARI decouples the knowledge grounding into multiple sources and response generation, which allows easy extension to various knowledge sources including the possibility of not using any sources. To study the problem, we construct a personalized knowledge-grounded dialogue dataset Knowledge Behind Persona (KBP), which is the first to consider the dependency between persona and implicit knowledge. Experimental results on the KBP dataset demonstrate that the SAFARI framework can effectively produce persona-consistent and knowledge-enhanced responses.

pdf bib
Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration
Yang Deng | Lizi Liao | Liang Chen | Hongru Wang | Wenqiang Lei | Tat-Seng Chua
Findings of the Association for Computational Linguistics: EMNLP 2023

Conversational systems based on Large Language Models (LLMs), such as ChatGPT, show exceptional proficiency in context understanding and response generation. However, they still possess limitations, such as failing to ask clarifying questions to ambiguous queries or refuse users’ unreasonable requests, both of which are considered as key aspects of a conversational agent’s proactivity. This raises the question of whether LLM-based conversational systems are equipped to handle proactive dialogue problems. In this work, we conduct a comprehensive analysis of LLM-based conversational systems, specifically focusing on three key aspects of proactive dialogues: clarification, target-guided, and non-collaborative dialogues. To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme, which augments LLMs with the goal planning capability over descriptive reasoning chains. Empirical findings are discussed to promote future studies on LLM-based proactive dialogue systems.

pdf bib
Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue Questions with LLMs
Hongru Wang | Rui Wang | Fei Mi | Yang Deng | Zezhong Wang | Bin Liang | Ruifeng Xu | Kam-Fai Wong
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs), such as ChatGPT, greatly empower dialogue systems with strong language understanding and generation capabilities. However, most of the previous works prompt the LLMs to directly generate a response based on the dialogue context, overlooking the underlying linguistic cues about the user status exhibited in the context. Such in-depth dialogue scenarios are challenging for existing LLMs to figure out the user’s hidden needs and respond satisfactorily through a single-step inference. To this end, we propose a novel linguistic cue-based chain-of-thoughts (Cue-CoT), which enhances the LLMs inference with an intermediate reasoning step to find cues exhibited in the dialogue, aiming to provide a more personalized and engaging response. To evaluate the approach, we build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English, targeting 3 major linguistic cues during the conversation: personality, emotion, and psychology. We conducted experiments on the proposed benchmark with 5 LLMs under both zero-shot and one-shot settings. Empirical results demonstrate our proposed Cue-CoT method outperforms standard prompting methods in terms of both helpfulness and acceptability on all datasets.

pdf bib
Beyond Factuality: A Comprehensive Evaluation of Large Language Models as Knowledge Generators
Liang Chen | Yang Deng | Yatao Bian | Zeyu Qin | Bingzhe Wu | Tat-Seng Chua | Kam-Fai Wong
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks when being prompted to generate world knowledge. However, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge. In light of this, we introduce CONNER, a COmpreheNsive kNowledge Evaluation fRamework, designed to systematically and automatically evaluate generated knowledge from six important perspectives – Factuality, Relevance, Coherence, Informativeness, Helpfulness and Validity. We conduct an extensive empirical analysis of the generated knowledge from three different types of LLMs on two widely studied knowledge-intensive tasks, i.e., open-domain question answering and knowledge-grounded dialogue. Surprisingly, our study reveals that the factuality of generated knowledge, even if lower, does not significantly hinder downstream tasks. Instead, the relevance and coherence of the outputs are more important than small factual mistakes. Further, we show how to use CONNER to improve knowledge-intensive tasks by designing two strategies: Prompt Engineering and Knowledge Selection. Our evaluation code and LLM-generated knowledge with human annotations will be released to facilitate future research.

2022

pdf bib
ConReader: Exploring Implicit Relations in Contracts for Contract Clause Extraction
Weiwen Xu | Yang Deng | Wenqiang Lei | Wenlong Zhao | Tat-Seng Chua | Wai Lam
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We study automatic Contract Clause Extraction (CCE) by modeling implicit relations in legal contracts. Existing CCE methods mostly treat contracts as plain text, creating a substantial barrier to understanding contracts of high complexity. In this work, we first comprehensively analyze the complexity issues of contracts and distill out three implicit relations commonly found in contracts, namely, 1) Long-range Context Relation that captures the correlations of distant clauses; 2) Term-Definition Relation that captures the relation between important terms with their corresponding definitions, and 3) Similar Clause Relation that captures the similarities between clauses of the same type. Then we propose a novel framework ConReader to exploit the above three relations for better contract understanding and improving CCE. Experimental results show that ConReader makes the prediction more interpretable and achieves new state-of-the-art on two CCE tasks in both conventional and zero-shot settings.

pdf bib
PACIFIC: Towards Proactive Conversational Question Answering over Tabular and Textual Data in Finance
Yang Deng | Wenqiang Lei | Wenxuan Zhang | Wai Lam | Tat-Seng Chua
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

To facilitate conversational question answering (CQA) over hybrid contexts in finance, we present a new dataset, named PACIFIC. Compared with existing CQA datasets, PACIFIC exhibits three key features: (i) proactivity, (ii) numerical reasoning, and (iii) hybrid context of tables and text. A new task is defined accordingly to study Proactive Conversational Question Answering (PCQA), which combines clarification question generation and CQA. In addition, we propose a novel method, namely UniPCQA, to adapt a hybrid format of input and output content in PCQA into the Seq2Seq problem, including the reformulation of the numerical reasoning process as code generation. UniPCQA performs multi-task learning over all sub-tasks in PCQA and incorporates a simple ensemble strategy to alleviate the error propagation issue in the multi-task learning by cross-validating top-k sampled Seq2Seq outputs. We benchmark the PACIFIC dataset with extensive baselines and provide comprehensive evaluations on each sub-task of PCQA.

2021

pdf bib
Towards Generative Aspect-Based Sentiment Analysis
Wenxuan Zhang | Xin Li | Yang Deng | Lidong Bing | Wai Lam
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Aspect-based sentiment analysis (ABSA) has received increasing attention recently. Most existing work tackles ABSA in a discriminative manner, designing various task-specific classification networks for the prediction. Despite their effectiveness, these methods ignore the rich label semantics in ABSA problems and require extensive task-specific designs. In this paper, we propose to tackle various ABSA tasks in a unified generative framework. Two types of paradigms, namely annotation-style and extraction-style modeling, are designed to enable the training process by formulating each ABSA task as a text generation problem. We conduct experiments on four ABSA tasks across multiple benchmark datasets where our proposed generative approach achieves new state-of-the-art results in almost all cases. This also validates the strong generality of the proposed framework which can be easily adapted to arbitrary ABSA task without additional task-specific model design.

pdf bib
Learning to Rank Question Answer Pairs with Bilateral Contrastive Data Augmentation
Yang Deng | Wenxuan Zhang | Wai Lam
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

In this work, we propose a novel and easy-to-apply data augmentation strategy, namely Bilateral Generation (BiG), with a contrastive training objective for improving the performance of ranking question answer pairs with existing labeled data. In specific, we synthesize pseudo-positive QA pairs in contrast to the original negative QA pairs with two pre-trained generation models, one for question generation, the other for answer generation, which are fine-tuned on the limited positive QA pairs from the original dataset. With the augmented dataset, we design a contrastive training objective for learning to rank question answer pairs. Experimental results on three benchmark datasets show that our method significantly improves the performance of ranking models by making full use of existing labeled data and can be easily applied to different ranking models.

pdf bib
Aspect Sentiment Quad Prediction as Paraphrase Generation
Wenxuan Zhang | Yang Deng | Xin Li | Yifei Yuan | Lidong Bing | Wai Lam
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Aspect-based sentiment analysis (ABSA) has been extensively studied in recent years, which typically involves four fundamental sentiment elements, including the aspect category, aspect term, opinion term, and sentiment polarity. Existing studies usually consider the detection of partial sentiment elements, instead of predicting the four elements in one shot. In this work, we introduce the Aspect Sentiment Quad Prediction (ASQP) task, aiming to jointly detect all sentiment elements in quads for a given opinionated sentence, which can reveal a more comprehensive and complete aspect-level sentiment structure. We further propose a novel Paraphrase modeling paradigm to cast the ASQP task to a paraphrase generation process. On one hand, the generation formulation allows solving ASQP in an end-to-end manner, alleviating the potential error propagation in the pipeline solution. On the other hand, the semantics of the sentiment elements can be fully exploited by learning to generate them in the natural language form. Extensive experiments on benchmark datasets show the superiority of our proposed method and the capacity of cross-task transfer with the proposed unified Paraphrase modeling framework.

pdf bib
Factual Consistency Evaluation for Text Summarization via Counterfactual Estimation
Yuexiang Xie | Fei Sun | Yang Deng | Yaliang Li | Bolin Ding
Findings of the Association for Computational Linguistics: EMNLP 2021

Despite significant progress has been achieved in text summarization, factual inconsistency in generated summaries still severely limits its practical applications. Among the key factors to ensure factual consistency, a reliable automatic evaluation metric is the first and the most crucial one. However, existing metrics either neglect the intrinsic cause of the factual inconsistency or rely on auxiliary tasks, leading to an unsatisfied correlation with human judgments or increasing the inconvenience of usage in practice. In light of these challenges, we propose a novel metric to evaluate the factual consistency in text summarization via counterfactual estimation, which formulates the causal relationship among the source document, the generated summary, and the language prior. We remove the effect of language prior, which can cause factual inconsistency, from the total causal effect on the generated summary, and provides a simple yet effective way to evaluate consistency without relying on other auxiliary tasks. We conduct a series of experiments on three public abstractive text summarization datasets, and demonstrate the advantages of the proposed metric in both improving the correlation with human judgments and the convenience of usage. The source code is available at https://github.com/xieyxclack/factual_coco.

pdf bib
Exploiting Reasoning Chains for Multi-hop Science Question Answering
Weiwen Xu | Yang Deng | Huihui Zhang | Deng Cai | Wai Lam
Findings of the Association for Computational Linguistics: EMNLP 2021

We propose a novel Chain Guided Retriever-reader (CGR) framework to model the reasoning chain for multi-hop Science Question Answering. Our framework is capable of performing explainable reasoning without the need of any corpus-specific annotations, such as the ground-truth reasoning chain, or human-annotated entity mentions. Specifically, we first generate reasoning chains from a semantic graph constructed by Abstract Meaning Representation of retrieved evidence facts. A Chain-aware loss, concerning both local and global chain information, is also designed to enable the generated chains to serve as distant supervision signals for training the retriever, where reinforcement learning is also adopted to maximize the utility of the reasoning chains. Our framework allows the retriever to capture step-by-step clues of the entire reasoning process, which is not only shown to be effective on two challenging multi-hop Science QA tasks, namely OpenBookQA and ARC-Challenge, but also favors explainability.

pdf bib
Aspect-based Sentiment Analysis in Question Answering Forums
Wenxuan Zhang | Yang Deng | Xin Li | Lidong Bing | Wai Lam
Findings of the Association for Computational Linguistics: EMNLP 2021

Aspect-based sentiment analysis (ABSA) typically focuses on extracting aspects and predicting their sentiments on individual sentences such as customer reviews. Recently, another kind of opinion sharing platform, namely question answering (QA) forum, has received increasing popularity, which accumulates a large number of user opinions towards various aspects. This motivates us to investigate the task of ABSA on QA forums (ABSA-QA), aiming to jointly detect the discussed aspects and their sentiment polarities for a given QA pair. Unlike review sentences, a QA pair is composed of two parallel sentences, which requires interaction modeling to align the aspect mentioned in the question and the associated opinion clues in the answer. To this end, we propose a model with a specific design of cross-sentence aspect-opinion interaction modeling to address this task. The proposed method is evaluated on three real-world datasets and the results show that our model outperforms several strong baselines adopted from related state-of-the-art models.

2020

pdf bib
AnswerFact: Fact Checking in Product Question Answering
Wenxuan Zhang | Yang Deng | Jing Ma | Wai Lam
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Product-related question answering platforms nowadays are widely employed in many E-commerce sites, providing a convenient way for potential customers to address their concerns during online shopping. However, the misinformation in the answers on those platforms poses unprecedented challenges for users to obtain reliable and truthful product information, which may even cause a commercial loss in E-commerce business. To tackle this issue, we investigate to predict the veracity of answers in this paper and introduce AnswerFact, a large scale fact checking dataset from product question answering forums. Each answer is accompanied by its veracity label and associated evidence sentences, providing a valuable testbed for evidence-based fact checking tasks in QA settings. We further propose a novel neural model with tailored evidence ranking components to handle the concerned answer veracity prediction problem. Extensive experiments are conducted with our proposed model and various existing fact checking methods, showing that our method outperforms all baselines on this task.

pdf bib
Multi-hop Inference for Question-driven Summarization
Yang Deng | Wenxuan Zhang | Wai Lam
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Question-driven summarization has been recently studied as an effective approach to summarizing the source document to produce concise but informative answers for non-factoid questions. In this work, we propose a novel question-driven abstractive summarization method, Multi-hop Selective Generator (MSG), to incorporate multi-hop reasoning into question-driven summarization and, meanwhile, provide justifications for the generated summaries. Specifically, we jointly model the relevance to the question and the interrelation among different sentences via a human-like multi-hop inference module, which captures important sentences for justifying the summarized answer. A gated selective pointer generator network with a multi-view coverage mechanism is designed to integrate diverse information from different perspectives. Experimental results show that the proposed method consistently outperforms state-of-the-art methods on two non-factoid QA datasets, namely WikiHow and PubMedQA.

pdf bib
Intra-/Inter-Interaction Network with Latent Interaction Modeling for Multi-turn Response Selection
Yang Deng | Wenxuan Zhang | Wai Lam
Proceedings of the 28th International Conference on Computational Linguistics

Multi-turn response selection has been extensively studied and applied to many real-world applications in recent years. However, current methods typically model the interactions between multi-turn utterances and candidate responses with iterative approaches, which is not practical as the turns of conversations vary. Besides, some latent features, such as user intent and conversation topic, are under-discovered in existing works. In this work, we propose Intra-/Inter-Interaction Network (I3) with latent interaction modeling to comprehensively model multi-level interactions between the utterance context and the response. In specific, we first encode the intra- and inter-utterance interaction with the given response from both individual utterance and the overall utterance context. Then we develop a latent multi-view subspace clustering module to model the latent interaction between the utterance and response. Experimental results show that the proposed method substantially and consistently outperforms existing state-of-the-art methods on three multi-turn response selection benchmark datasets.

2018

pdf bib
Knowledge as A Bridge: Improving Cross-domain Answer Selection with External Knowledge
Yang Deng | Ying Shen | Min Yang | Yaliang Li | Nan Du | Wei Fan | Kai Lei
Proceedings of the 27th International Conference on Computational Linguistics

Answer selection is an important but challenging task. Significant progresses have been made in domains where a large amount of labeled training data is available. However, obtaining rich annotated data is a time-consuming and expensive process, creating a substantial barrier for applying answer selection models to a new domain which has limited labeled data. In this paper, we propose Knowledge-aware Attentive Network (KAN), a transfer learning framework for cross-domain answer selection, which uses the knowledge base as a bridge to enable knowledge transfer from the source domain to the target domains. Specifically, we design a knowledge module to integrate the knowledge-based representational learning into answer selection models. The learned knowledge-based representations are shared by source and target domains, which not only leverages large amounts of cross-domain data, but also benefits from a regularization effect that leads to more general representations to help tasks in new domains. To verify the effectiveness of our model, we use SQuAD-T dataset as the source domain and three other datasets (i.e., Yahoo QA, TREC QA and InsuranceQA) as the target domains. The experimental results demonstrate that KAN has remarkable applicability and generality, and consistently outperforms the strong competitors by a noticeable margin for cross-domain answer selection.